Skip to main content
Article
Protein conformational entropy is not slaved to water.
Scientific Reports (2020)
  • Brian Marques, University of Pennsylvania
  • Matthew Stetz, University of Pennsylvania
  • Christine Jorge, University of Pennsylvania
  • Kathleen Valentine, University of Pennsylvania
  • A. J. Wand, University of Pennsylvania
  • Nathaniel Nucci, Rowan University
Abstract
Conformational entropy can be an important element of the thermodynamics of protein functions such as the binding of ligands. The observed role for conformational entropy in modulating molecular recognition by proteins is in opposition to an often-invoked theory for the interaction of protein molecules with solvent water. The “solvent slaving” model predicts that protein motion is strongly coupled to various aspects of water such as bulk solvent viscosity and local hydration shell dynamics. Changes in conformational entropy are manifested in alterations of fast internal side chain motion that is detectable by NMR relaxation. We show here that the fast-internal side chain dynamics of several proteins are unaffected by changes to the hydration layer and bulk water. These observations indicate that the participation of conformational entropy in protein function is not dictated by the interaction of protein molecules and solvent water under the range of conditions normally encountered.
Publication Date
October 16, 2020
DOI
10.1038/S41598-020-74382-5
Publisher Statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. 
Citation Information
Brian Marques, Matthew Stetz, Christine Jorge, Kathleen Valentine, et al.. "Protein conformational entropy is not slaved to water." Scientific Reports Vol. 10 Iss. 1 (2020) p. 17587 - 17587
Available at: http://works.bepress.com/nathaniel-nucci/18/
Creative Commons license
Creative Commons License
This work is licensed under a Creative Commons CC_BY International License.