From the SelectedWorks of Natasha Yates, MA

March 14, 2016

Jordan and Yates ACS 2016 V2.pdf

Natasha L Yates

Available at: https://works.bepress.com/natasha-yates/4/

A discovery learning approach to atomic structure and the periodic table:

Training current and future teachers what really matters in NGSS

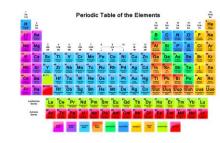
Annalisa Jordan Ph.D., Chemistry Natasha Yates M.A., Education ST. CATHERINE UNIVERSITY

Structure and Properties of Matter Elementary, Middle and High school

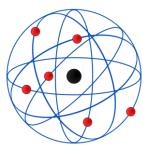
Submicroscopic events with macroscopic assessments

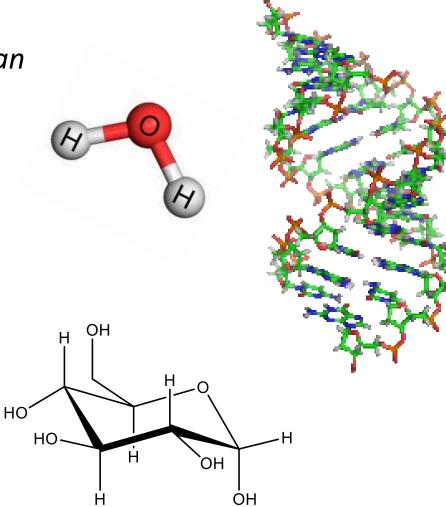
ST. CATHERINE UNIVERSITY

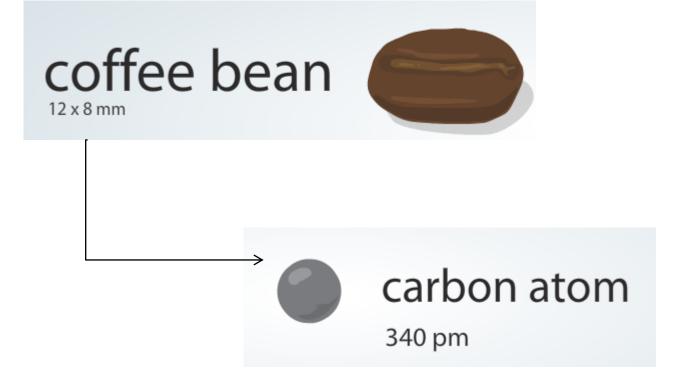




Foundations in Chemistry Concepts: How we do it

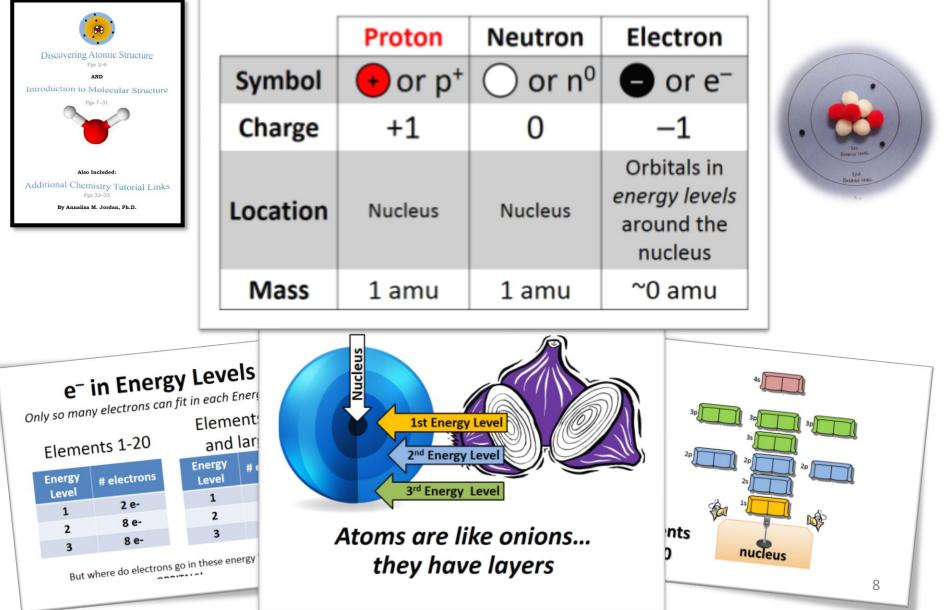

- 1. Define basic chemistry terms
- 2. Discovery Learning: Atomic Structure
- 3. Discovery Learning: Periodic Table
- 4. Relating to material: Elements in Our Pockets

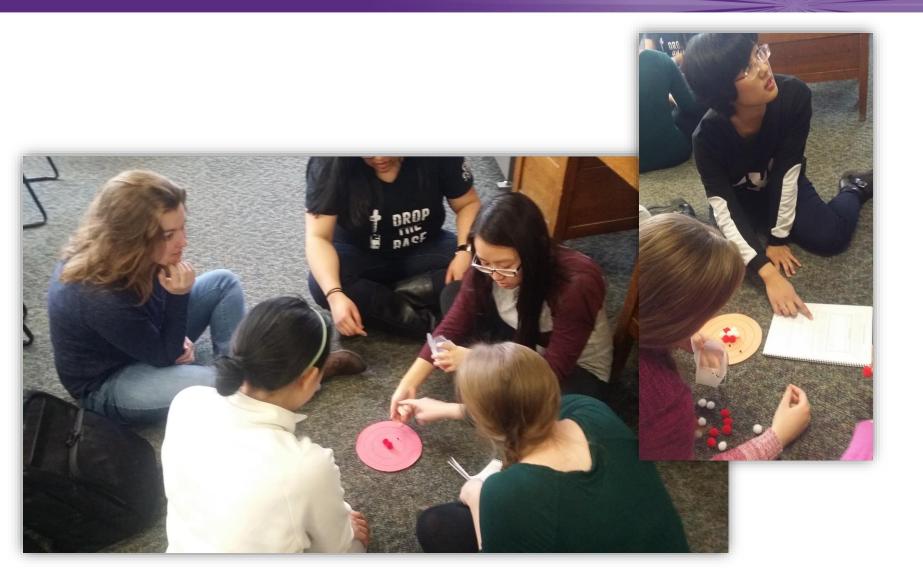

Make the students active learners in studying the foundational concepts.


1. Intro to chemistry with questions

Inquiry

- List as many chemicals as you can in 60 seconds...
 - What is chemistry?
 - What are examples of chemicals?
 - Where is chemistry in your personal life?

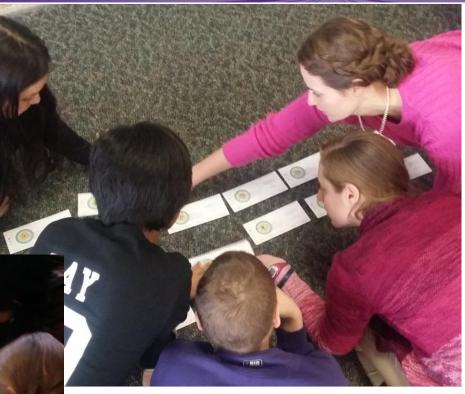

• EDIT SLIDE PICTURES AND TEXT



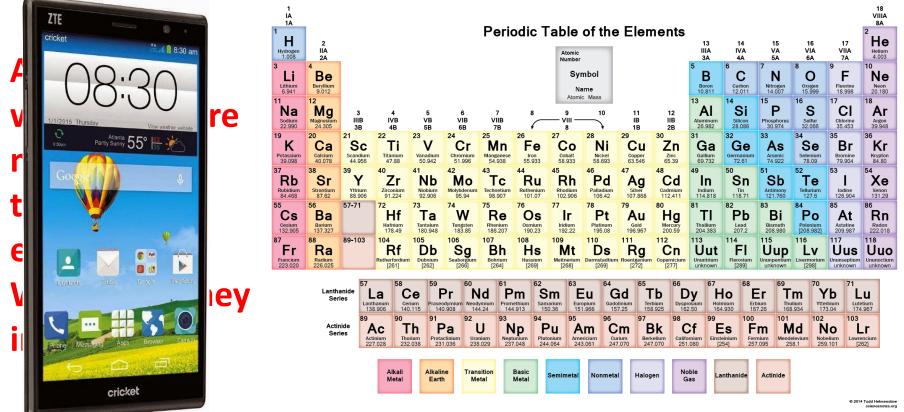
http://learn.genetics.utah.edu/content/begin/cells/scale/

How small is an atom?

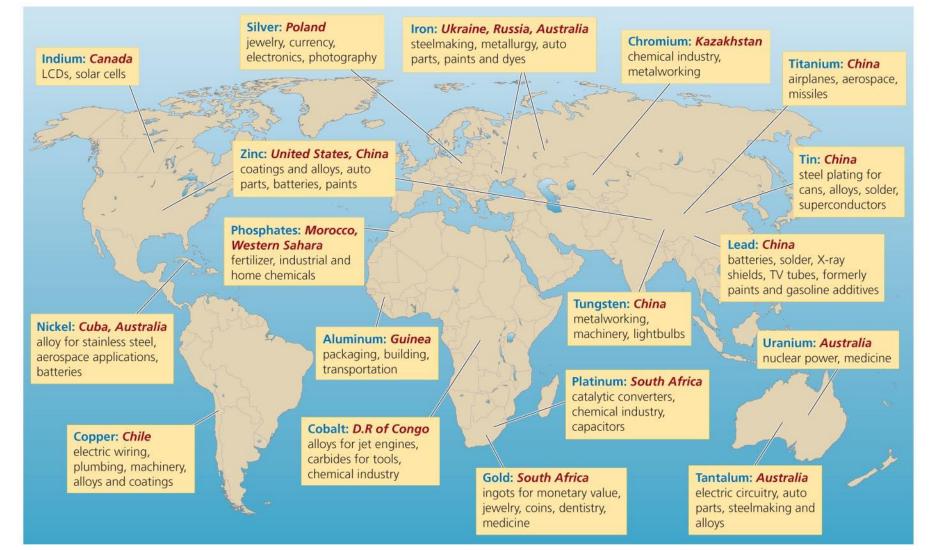
Subatomic Particles



H		Periodic Table of the Elements © www.elementsdatabase.											com	He ²			
Li	Be	 hydrogen alkali metals alkali earth metals 				 post-transition metals nonmetals noble gases 				В	C	N	08	F	¹⁰ Ne		
Na	12 Mg	transition metals				halogens metaloids				AI	Si	15 P	S ¹⁶	CI CI	18 Ar		
K ¹⁹	Ca ²⁰	SC ²¹	Ti Ti	V ²³	Cr ²⁴	25 Mn	Fe ²⁶	C0	28 Ni	Cu Cu	Zn Zn	Ga ³¹	Ge ³²	As	34 Se	Br	36 Kr
Rb	38 Sr	39 Y	Zr Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	Ag	48 Cd	49 In	50 Sn	51 Sb	Te ⁵²	53 	Xe ⁵⁴
Cs	Ba ⁵⁶	57-71	72 Hf	73 Ta	W ⁷⁴	Re Re	76 Os	17 Ir	Pt ⁷⁸	79 Au	80 Hg	81 Ti	Pb	Bi Bi	⁸⁴ Po	At 85	86 Rn
Fr	Ra ⁸⁸	89-103	104 Rf	105 Db	106 Sg	Bh	108 Hs	Mt	110 Ds	nii Rg	¹¹² Cn	Uut	114 FI	Uup	116 LV	Uus	Uuo
lantha	lanthanoids		Ce 58	Pr Pr	60 Nd	Pm	Sm ⁶²	Eu ⁶³	Gd ⁶⁴	Tb ⁶⁵	Dy By	Ho Ho	Er ⁶⁸	Tm ⁶⁹	Yb	71 Lu	
actino	actinoids		90 Th			93 Np		Am	96 Cm	97 Bk	098 Cf				102 No		



ST. CATHERINE UNIVERSITY


4. Relating to Material: *Elements in Our Pockets* Inquiry to Engage: 1st engage the students by asking...
 Anyone have any elements in your pocket?

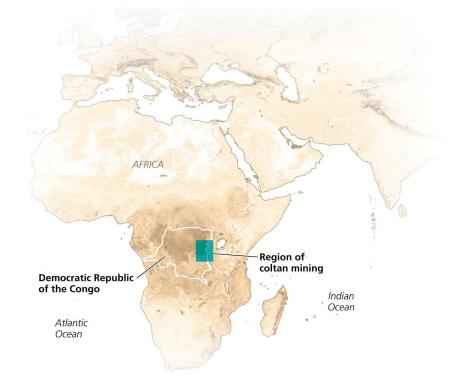
Minerals are everywhere in our products

Economically useful mineral resources

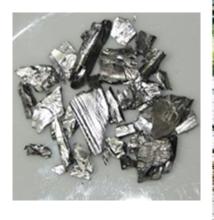
© 2011 Pearson Education, Inc.

Let's look at Tantalum

- Atomic Number: 73
- Atomic Weight: 180.94788
- Melting Point: 3290 K (3017°C or 5463°F)
- Boiling Point: 5731 K (5458°C or 9856°F)
- **Density:** 16.4 grams per cubic centimeter
- Phase at Room Temperature: Solid
- Element Classification: Metal
- Period Number: 6 Group Number: 5



(b) Capacitor containing tantalum



http://images-of-elements.com/tantalum.php http://education.jlab.org/itselemental/ele073.html

Central Case: Mining for ... cell phones?

© 2011 Pearson Education,

Foundations in Chemistry Concepts: How we do it

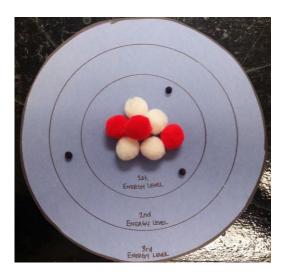
- 1. Define basic chemistry terms
- 2. Discovery Learning: Atomic Structure
- 3. Discovery Learning: *Periodic Table*
- 4. Relating to material: *Elements in Our Pockets Make the students active learners in studying the foundational concepts.*

Edit slide so that it is a summary of pictures from our work (Atomic Structure Activty, PT, and Coltan)

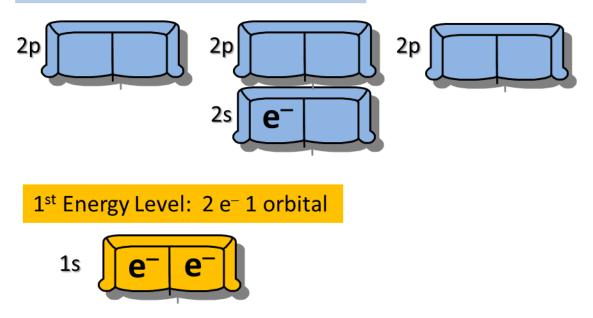
2. Atomic Structure Activity

Activity:

Formative Assessments:


 Worksheets, Answering questions verbally.

sample notecard: • TACTO TPICTURE OF CORDESTION:


# p+	# nº	# e-	Atomic #	Atomic Mass	

Now organize what you have done objective:

• Organize the 20 simplest atoms *THREE* different ways.

2nd Energy Level: 1 e⁻ in 1 orbital

3. Discovery Learning: *Periodic Table* **Objective:**

- Organize the 20 simplest atoms *THREE* different ways.
 - By atomic #
 - By # of energy levels of e⁻
 - By # of e⁻ in the outermost energy level

