Skip to main content
Article
Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications
Frontiers in Materials
  • Marilyn C. McNamara, Iowa State University
  • Amir Ehsan Niaraki-Asli, Iowa State University
  • Jingshuai Guo, Iowa State University
  • Jasmin Okuzono, Iowa State University
  • Reza Montazami, Iowa State University
  • Nicole N. Hashemi, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
3-19-2020
DOI
10.3389/fmats.2020.00061
Abstract

Microfluidically manufacturing graphene-alginate microfibers create possibilities for encapsulating rat neural cells within conductive 3D tissue scaffolding to enable the creation of real-time 3D sensing arrays with high physiological relavancy. Cells are encapsulated using the biopolymer alginate, which is combined with graphene to create a cell-containing hydrogel with increased electrical conductivity. Resulting novel alginate-graphene microfibers showed a 2.5-fold increase over pure alginate microfibers, but did not show significant differences in size and porosity. Cells encapsulated within the microfibers survive for up to 8 days, and maintain ~20% live cells over that duration. The biocompatible aqueous graphene suspension used in this investigation was obtained via liquid phase exfoliation of pristine graphite, to create a graphene-alginate pre-hydrogel solution.

Comments

This article is published as McNamara, Marilyn C., Niaraki Asli, Amir Ehsan, Jingshuai Guo, Jasmin Okuzono, Reza Montazami, and Nicole N. Hashemi. "Enhancing the Conductivity of Cell-Laden Alginate Microfibers with Aqueous Graphene for Neural Applications." Frontiers in Materials 7 (2020): 61. DOI: 10.3389/fmats.2020.00061. Posted with permission.

Creative Commons License
Creative Commons Attribution 4.0 International
Copyright Owner
The Author(s)
Language
en
File Format
application/pdf
Citation Information
Marilyn C. McNamara, Amir Ehsan Niaraki-Asli, Jingshuai Guo, Jasmin Okuzono, et al.. "Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications" Frontiers in Materials Vol. 7 (2020) p. 61
Available at: http://works.bepress.com/nastaran_hashemi/50/