Skip to main content
Article
Vehicle routing problem with stochastic demand (VRPSD): optimisation by neighbourhood search embedded adaptive ant algorithm (ns-AAA)
Faculty of Engineering and Information Sciences - Papers: Part A
  • M R Nagalakshmi
  • Mukul Tripathi
  • Nagesh Shukla, University of Wollongong
  • Manoj Tiwari, Indian Institute Of Technology,National Institute Of Foundry And Forge Technology
RIS ID
74142
Publication Date
1-1-2009
Publication Details

Nagalakshmi, M. R., Tripathi, M., Shukla, N. & Tiwari, M. (2009). Vehicle routing problem with stochastic demand (VRPSD): optimisation by neighbourhood search embedded adaptive ant algorithm (ns-AAA). International Journal of Computer Aided Engineering and Technology, 1 (3), 300-321.

Abstract
Taking into account the real world applications, this paper considers a vehicle routing problem with stochastic demand (VRPSD) in which the customer demand has been modelled as a stochastic variable. Considering the computational complexity of the problem and to enhance the algorithm performance, a neighbourhood search embedded adaptive ant algorithm (ns-AAA) is proposed as an improvement to the existing ant colony optimisation. The proposed metaheuristic adapts itself to maintain an adequate balance between exploitation and exploration throughout the run of the algorithm. The performance of the proposed methodology is benchmarked against a set of test instances that were generated using design of experiment (DOE) techniques. Besides, analysis of variance (ANOVA) is performed to determine the impact of various factors on the objective function value. The robustness of the proposed algorithm is authenticated against ant colony optimisation and genetic algorithm over which it always demonstrated better results thereby proving its supremacy on the concerned problem.
Citation Information
M R Nagalakshmi, Mukul Tripathi, Nagesh Shukla and Manoj Tiwari. "Vehicle routing problem with stochastic demand (VRPSD): optimisation by neighbourhood search embedded adaptive ant algorithm (ns-AAA)" (2009)
Available at: http://works.bepress.com/nagesh_shukla/24/