Skip to main content
Article
On the role of fractional calculus in electromagnetic theory
Departmental Papers (ESE)
  • Nader Engheta, University of Pennsylvania
Document Type
Journal Article
Date of this Version
8-1-1997
Comments
Copyright YEAR 1997. Reprinted from IEEE Antennas and Propagation Magazine, Volume 39, Issue 4, August 1997, pages 35-46.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Abstract

We have applied the concept of fractional derivatives/integrals in several specific electromagnetic problems, and have obtained promising results and ideas that demonstrate that these mathematical operators can be interesting and useful tools in electromagnetic theory. We give a brief review of the general principles, definitions, and several features of fractional derivatives/integrals, and then we review some of our ideas and findings in exploring potential applications of fractional calculus in some electromagnetic problems.

Keywords
  • fractional derivative,
  • fractional integral,
  • electromagnetism,
  • fractional multipole
Citation Information
Nader Engheta. "On the role of fractional calculus in electromagnetic theory" (1997)
Available at: http://works.bepress.com/nader_engheta/68/