Skip to main content
Article
Time Reversal for 6G Spatiotemporal Focusing: Recent Experiments, Opportunities, and Challenges
IEEE Vehicular Technology Magazine
  • George C. Alexandropoulos, Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Panepistimiopolis Ilissia, Athens, 15784, Greece & Technology Innovation Institute, Masdar City, Abu Dhabi, 9639, United Arab Emirates
  • Ali Mokh, ESPCI Paris, PSL Research University, CNRS, Institut Langevin, Paris, 75005, France
  • Ramin Khayatzadeh, Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies France, Boulogne-Billancourt, 92100, France
  • Julien de Rosny, ESPCI Paris, PSL Research University, CNRS, Institut Langevin, Paris, 75005, France
  • Mohamed Kamoun, Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies France, Boulogne-Billancourt, 92100, France
  • Abdelwaheb Ourir, ESPCI Paris, PSL Research University, CNRS, Institut Langevin, Paris, 75005, France
  • Arnaud Tourin, ESPCI Paris, PSL Research University, CNRS, Institut Langevin, Paris, 75005, France
  • Mathias Fink, ESPCI Paris, PSL Research University, CNRS, Institut Langevin, Paris, 75005, France
  • Mérouane Debbah, Technology Innovation Institute & Mohamed Bin Zayed University of Artificial Intelligence
Document Type
Article
Abstract

Late visions and trends for the future 6G of wireless communications advocate, among other technologies, the deployment of network nodes with extreme numbers of antennas and up to terahertz frequencies as a means to enable various immersive applications. However, these technologies impose several challenges in the design of radio-frequency (RF) front ends and beamforming architectures as well as ultrawideband waveforms and computationally efficient transceiver signal processing. In this article, we revisit the time-reversal (TR) technique, which was initially experimented in acoustics, in the context of large-bandwidth 6G wireless communications, capitalizing on its high-resolution spatiotemporal focusing realized with low-complexity transceivers. We first overview the representative state of the art in TR-based wireless communications, identifying the key competencies and requirements of TR for efficient operation. Recent and novel experimental setups and results for the spatiotemporal-focusing capability of TR at the carrier frequencies 2.5, 36, and 273 GHz are then presented, demonstrating in quantitative ways the technique's effectiveness in these very different frequency bands as well as the roles of the available bandwidth and the number of transmit antennas. We also showcase the TR potential for realizing low-complexity multiuser communications. The opportunities arising from TR-based wireless communications as well as the challenges for finding their place in 6G networks, also in conjunction with other complementary candidate technologies, are highlighted.

DOI
10.1109/MVT.2022.3196481
Publication Date
9-15-2022
Keywords
  • 4G mobile communication systems,
  • 5G mobile communication systems,
  • Complex networks,
  • Focusing,
  • Millimeter waves,
  • Orthogonal frequency division multiplexing,
  • Radio transceivers,
  • Wireless sensor networks
Comments

IR Deposit conditions:

OA version (pathway a) Accepted version

No embargo

When accepted for publication, set statement to accompany deposit (see policy)

Must link to publisher version with DOI

Publisher copyright and source must be acknowledged

Citation Information
G. C. Alexandropoulos et al., "Time Reversal for 6G Spatiotemporal Focusing: Recent Experiments, Opportunities, and Challenges," in IEEE Vehicular Technology Magazine, vol. 17, no. 4, pp. 74-82, Dec. 2022, doi:10.1109/MVT.2022.3196481