Skip to main content
Article
Variational Autoencoders for Reliability Optimization in Multi-Access Edge Computing Networks
arXiv
  • Arian Ahmadi, University of Colorado
  • Omid Semiari, University of Colorado
  • Mehdi Bennis, University of Oulu
  • Méroúane Debbah, Technology Innovation Institute, Masdar City, Abu Dhabi & Mohamed bin Zayed University of Artificial Intelligence
Document Type
Article
Abstract

Multi-access edge computing (MEC) is viewed as an integral part of future wireless networks to support new applications with stringent service reliability and latency requirements. However, guaranteeing ultra-reliable and low-latency MEC (URLL MEC) is very challenging due to uncertainties of wireless links, limited communications and computing resources, as well as dynamic network traffic. Enabling URLL MEC mandates taking into account the statistics of the end-to-end (E2E) latency and reliability across the wireless and edge computing systems. In this paper, a novel framework is proposed to optimize the reliability of MEC networks by considering the distribution of E2E service delay, encompassing over-the-air transmission and edge computing latency. The proposed framework builds on correlated variational autoencoders (VAEs) to estimate the full distribution of the E2E service delay. Using this result, a new optimization problem based on risk theory is formulated to maximize the network reliability by minimizing the Conditional Value at Risk (CVaR) as a risk measure of the E2E service delay. To solve this problem, a new algorithm is developed to efficiently allocate users' processing tasks to edge computing servers across the MEC network, while considering the statistics of the E2E service delay learned by VAEs. The simulation results show that the proposed scheme outperforms several baselines that do not account for the risk analyses or statistics of the E2E service delay.

DOI
10.48550/arXiv.2201.10032
Publication Date
1-25-2022
Keywords
  • Computation theory; Cost benefit analysis; Learning systems; Reliability theory; Risk analysis; Risk assessment; Value engineering
Disciplines
Comments

Preprint: arXiv

  • Archived with thanks to arXiv
  • Preprint License: CC by 4.0
  • Uploaded 24 March 2022
Citation Information
A. Ahmadi, O. Semiari, M. Bennis, and M. Debbah, "Variational autoencoders for reliability optimization in multi-access edge computing networks," 2022, arXiv:2201.10032