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ABSTRACT

Large-scale fading (LSF) between interacting nodes is a fundamental element in radio communications, responsible for
weakening the propagation, and thus worsening the service quality. Given the importance of channel-losses in general,
and the inevitability of random spatial geometry in real-life wireless networks, it was then natural to merge these two
paradigms together in order to obtain an improved stochastical model for the LSF indicator. Therefore, in exact closed-form
notation, we generically derived the LSF distribution between a prepositioned reference base-station and an arbitrary node
for a multi-cellular random network model. In fact, we provided an explicit and definitive formulation that considered at
once: the lattice profile, the users’ random geometry, the effect of the far-field phenomenon, the path-loss behavior, and the
stochastic impact of channel scatters. The veracity and accuracy of the theoretical analysis were also confirmed through
Monte Carlo simulations. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For wireless communications, large-scale fading (LSF)
is indeed a basic consequence of the signal propagation
between a base-station (BS) and a mobile node. In fact,
because of its prerequisite for a host of network metrics
including outage probability, the probability density func-
tion (PDF) for the path-loss (PL) or the received power
level has been previously shown for a fixed predetermined
separation between a node and a BS [1–5]. The aim in
this paper is to reconsider this analytical problem for a
multi-cellular network (MCN) architecture by generalizing
the channel-loss distribution between any uniformly-based
random positioned node and a preassigned BS reference.
Evidently, this PDF can typically be obtained experimen-
tally based on Monte Carlo (MC) simulations. However,
there are two reasons why this approach is inconvenient:
(i) random simulation is computationally expensive; and
(ii) the obtained result is analytically intractable. These
factors are further testaments for the necessity to obtain an
explicit, generic, and rigorous theoretical derivation for the
LSF density.

In recent years, some relevant work in the direction
of random uniform spatial distribution model has gradually

emerged; this effort is chronicled as follows. Initially, the
contribution of [6] found the PL density for uniformly
deployed nodes in a fixed circular cell. Then, an attempt to
simplify this density result through curve fitting was shown
in [7]. Next, we generalized in [8] the previous analysis in
order to ensure spatial adaptability for various disk-based
surface regions, along with multi-width rings and circu-
lar sectors. Furthermore, we derived in [9] the exact LSF
distribution for an MCN between a random node and a
reference BS located at the centroid of an hexagonal cell.
Following the publication of our paper, using a slightly
different approach, another paper appeared that also deter-
mined the PL density within a hexagonal cell and provided
approximate options [10]. However, these outcomes did
not specifically take into account a comprehensive and pre-
cise analysis that incorporated at once: the structure of the
network configuration, users’ nodal geometry, the effect of
the far-field phenomenon, the PL predictive behavior, and
the impact of channel shadowing due to in-field scatterers.
Thus, while remaining generic and scalable for different
network purposes, we aim here to accurately and explicitly
solve this challenge by holistically formulating the prop-
agation fundamentals of the LSF model for an adaptable
random MCN pattern.
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The rest of this paper is organized as follows. In
Section 2, we will set the stage for network analysis
by jointly assimilating the fundamental characteristics
of spatial uniformity, lattice geometry, and radiation
modeling. Then, in Section 3, the efficient and unbiased
random network emulation geared for channel analysis
will be developed. Respectively, in Sections 4 and 5, the
LSF distribution analysis will be derived, and the exact
closed-form stochastic result will be verified using MC
simulations. Finally, Section 6 will close the paper. The
symbols used in the paper are listed in Tables I and II.

2. CHARACTERISTICS OF THE
NETWORK MODEL

Despite various conjectures for reconstructing a network
based on inhomogeneous techniques, for example [11–13],

the random uniform distribution assumption has been
considered in analytical research, for example [14–19].
Essentially, if we consider A0 2 RC to be the surface area
of a particular network lattice, and n0 2 N� to represent
the scale of the architecture, then the uniform areal density
will be given by �0 , n0=A0. Generally, this simple spatial
realization is feasible when no major information about the
network site is available.

As shown in Figure 1, geometrical changes to the emu-
lated network model can be applied in order to simplify
the analysis. Indeed, it is clearly possible to dismember the
hexagonal cell into smaller repetitive forms. In fact, the
equilateral triangle is the most elementary portion of this
cell model. Thus, considering this sub-pattern for intern-
odal analysis will alleviate the derivation complexity of the
LSF distribution because the formulation only depends on
the reference to mobile separation and is unaffected by the

Table I. Notations and symbols used in the paper – part 1.

Symbol Definition/explanation

1A.x/ Indicator function where unity is the case if x 2 A � R

˛,ˇ PL parameters for a particular link (dB)
ıX .x/ Comparison probability density function of fX .x/ used for the ARM algorithm
� Angular coordinate for polar notation (rad)
Eƒ Array of generic attributes for the LSF distribution
� Cellular radius to the close-in distance ratio (RCR)
��min ,��max Minimum and maximum RCR values for the AR estimator variance
�I RCR value at the intersection point between Cartesian and radial AR functions
�opt Optimum RCR value for random generation
�b.x/ Arbitrary bounding function of fX .x/ used for the ARM algorithm
�0 Areal number density of a random network (no./unit of area)
�‰ Standard deviation of shadowing (dB)
� Set of arguments for the infimum of fX .x/
O Random instance of shadowing (dB)
‰S�dB Shadowing element that emulates in-field scatterers
A0 Surface area of a network lattice (unit of area)
AFF Deployment area with the effect of far-field for LSF analysis (unit of area)
Binomial.x, n, p/ Binomial PMF for obtaining x successes in n trials, where each successful event has probability p
DFF , DP

FF Support domain for the deployment surface in Cartesian and polar formats
erf .x/ , erfc .x/ Error function, and complementary error function
f0.�/ Integrand of the LSF distribution
f‰.l/ Distribution function of shadowing

fLPL .l, Eƒ/ Generic PDF of the LSF measure
fR.r/ Distribution function of the internodal distance
f max
R Maximum value of the radial PDF

fR� .r, �/ Joint polar PDF of the spatial random network
fW .w/ Density of the average decay
fX .x/ Marginal PDF for random network geometry along the x-axis
f max
X Maximum value of the marginal PDF along the x-axis
.FX /

�1. Ou/ ICDF used to generate random geometrical instances along the x-axis (unit of length)
fXY .x, y/ Spatial density function of a network cluster in Cartesian coordinate system
fY jXDOx .y/ Conditional PDF of a random network along the y-axis

PL, path-loss; ARM, acceptance rejection method; LSF, large-scale fading; AR, acceptance rate; PDF, probability density function; ICDF, inverse
cumulative distribution function; PMF, probability mass function.
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Table II. Notations and symbols used in the paper – part 2.

Symbol Definition/explanation

k, kmin Constants that enlarge ıX .x/
L Predefined size of the cellular radius (unit of length)
l Random sample of LSF between a reference and an arbitrary terminal (dB)
Ql0,QlL Measures w.h.p. the lower and higher extremities of LSF for an L-sized cell (dB)
ONl, Ol Random instance for the average PL and LSF between a reference and an arbitrary node (dB)
	lB Width of each histogram bin for estimating the LSF density (dB)
LPL.r/dB LSF level
LPL.r/dB Average PL decay
mNS ,�NS Mean and standard deviation of random variable NS

mQpA ,�QpA Mean and standard deviation of estimator QpA

On Random instance from a standard Gaussian PDF
n0 Amount of random nodes enclosed by a network lattice or cluster
nB Quantity of histogram bars considered for density estimation
nPL PL exponent
nS Amount of i.i.d. randomly generated samples or nodes
NS Random variable representing the number of accepted samples
nT Total number of randomly generated instances
N
�
m,�2

�
Gaussian PDF with mean m 2 R and standard deviation � 2 RC

N� Set of non-zero natural numbers
O.�/ Big-O notation for assessing the growth rate
pA D PrfA � 
g Probability for accepting a randomly generated sample in space 

QpA MC estimator for the acceptance probability of samples
pdf j , cdf j Estimated PDF and CDF value measured numerically at the jth bin
Q.x/ Q-function, which is a variation of the error function
r Random sample of the interpoint distance (unit of length)
Or Instance of the interspace between the reference and a node (unit of length)
r0 Close-in distance of an omni-directional reference antenna (unit of length)
RC Set of positive real numbers
Ou Sample occurrence generated from a standard uniform PDF
U.a, b/ Continuous uniform PDF bounded by Œa, b� 2 R2

w0, wL Average channel-loss at the close-in distance and the cell border (dB)
w.r/ Random variable for the average PL (dB)
Ox, Oy Geometrical occurrence generated for the coordinate pair of a random node (unit of length)2

LSF, large-scale fading; w.h.p., with high probability; PL, path-loss; PDF, probability density function; i.i.d., independent and identically
distributed; MC, Monte Carlo; CDF, cumulative distribution function.

Figure 1. Simplifying channel analysis via geometrical partitioning. MCN, multi-cellular network; BS, base-station.
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sectors rotation angle. Moreover, for planar deployment,
the areal density will not affect the channel analysis
because the network spatial distribution will remain ran-
dom and uniform.

3. RANDOM NETWORK MODELING
FOR ANALYSIS

3.1. Geometrical analysis

The characteristics described by nodal homogeneity,
lattice geometry, and far-field radiation phenomenon, must
collectively be incorporated in the spatial properties of the
random network. In principle, this integration has a dual
purpose: (i) it will be used to stochastically model the ran-
dom lattice and effectively derive the PL density function
for the entire network between a reference and an arbitrary
terminal; and (ii) it will be employed to emulate actual
random pattern instances, and numerically verify by
means of MC simulations the precision of the anticipated
LSF formulation.

To proceed, in Figure 2, the hexagonal cell is represented
with the far-field region. In this surface model, the cellu-
lar size L 2 RC and the far-field limit r0 2 RC are the
essential elements that define the entire geometry of
the network structure. For notational convenience, we
will define a parameter for the cellular radius to the
close-in distance ratio (RCR): � , L=r0. From this
model, we can determine the support range for the RCR
indicator such that the layout of the lattice is accord-

ingly preserved, namely, fr0 < L=2g \
n
r0 <

p
3L=2

o
D˚

� 2 RC j� > 2
�
.

An expression in Cartesian coordinate notation for
the spatial density function of a network cluster can be
obtained via the deployment area, that is, fXY .x, y/ D

1=AFF D 12=
�

3
p

3L2 � 2�r2
0

�
. As for the marginal PDF

for the nodal geometry along the x-axis, it can be computed
as follows:

fX.x/ D
Z
.x,y/2DFF

fXY .x, y/dy D
n
12=

�
3
p

3L2 � 2�r2
0

�o

�

��
p

3x �
q

r2
0 � x2

	
� 1 .r0=2 � x � r0/

C
p

3x � 1 .r0 � x � L=2/

C
p

3.L � x/ � 1 .L=2 � x � L/



(1)

3.2. Random spatial generation

The most efficient way to randomly generate arbitrary
instances would be to consider the inverse transformation
method (ITM), which is only possible through the use
of the inverse cumulative distribution function (ICDF). In
other words: Ox D

˚
.FX/

�1 .Ou � U.0, 1//
�
� fX.x/, where

U.0, 1/ is a standard uniform distribution [20]. Clearly,
the precondition in this approach requires the availability
of the ICDF in explicit notation, which is actually impos-
sible to achieve for the marginal density of (1). As an
alternative, the acceptance rejection method (ARM) can be
used for random number generation (RNG) [21]. Granted,
this iterative process is suboptimal when compared to the
ITM technique; nonetheless, we will develop an approach
for modifying the ARM algorithm in order to maximize
its performance.

Consider the distribution function fX.x/ : DX 7! RC,
where the domain of the density is DX ,

�
x˛ , xˇ

�
, and its

associated extremities are given by x˛ , min� 2 R and
xˇ , max� 2 R such that � � argfinf.fX.x/ > 0/g �
.x 2 R/. Then, based on the ARM procedure, we would
need to determine some continuous arbitrary bounding
function, say �b.x/ : DX 7! RC, that covers the domain
of fX.x/, while �b.x/ 	 fX.x/. Moreover, this bounding
function is expected to be an augmented version to some
valid comparison PDF ıX.x/ : DX 7! RC. In fact, the

Figure 2. Dimensions of the random network deployment surface with far-field. BS, base-station.
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most generic and simplest way would be to consider the
uniform case for the comparison density, namely, ıX.x/ D

UX
�
x˛ , xˇ

�
. And thus, the bounding function can be real-

ized by �b.x/ D kıX.x/ 9k 2 RC : k 	 1. Meanwhile,
the likelihood for accepting a randomly generated sample
is specified by the area below fX.x/. In contrast, the
remaining sector between �b.x/ and fX.x/ constitutes
the rejection region of generated samples. In order to max-
imize the acceptance rate (AR) of arbitrary samples, we
could in essence minimize the rejection region. This could
for instance be leveraged by adjusting the growth constant
k to kmin, such that k > kmin 	 1. To obtain this element,
we need to identify the maximum value of the PDF: f max

X ,
max
x2R
ffX.x/g 2 RC. Then, we perform the following

association: inf
k2RC

f�b.x/g D f max
X , and so we realize

that: kmin D f max
X =ıX.x/ D f max

X =UX
�
x˛ , xˇ

�
D

f max
X

�
xˇ � x˛

�
. Next, a decision for the suitability of

a sample for random generation based on the ARM

algorithm depends on the fX.Ov/=�b.Ov/ ratio, where Ov �
ıX.x/. This expression can further be elaborated as follows:

fX.Ov/

�b.Ov/
D

fX.Ov/

kıX.Ov/
<

fX.Ov/

kminıX.Ov/

D
fX.Ov/

f max
X

�
xˇ � x˛

�
UX
�
x˛ , xˇ

� D fX.Ov/

f max
X

(2)

If we apply (2) to the marginal PDF of (1), we then obtain:

fX.Ov/

f max
X
D 2

��
Ov �

q�
r2

0 � Ov
2
�
=3

	
L � 1 .r0=2 � Ov � r0/

COv=L � 1 .r0 � Ov � L=2/

C .1 � Ov=L/ .1 .L=2 � Ov � L/



(3)

After taking the previous analysis into account, we then
obtain the RNG algorithm for Ox � fX.x/ in Figure 3 that
ensures an efficient approach for generating nS samples.

Figure 3. Pseudocode for efficient random generation. RV, random variable.
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Figure 4. Marginal density of nodal geometry by means of random simulations. PDF, probability density function.

In Figure 4, the PDF along the x-axis is shown for two
different values of RCR obtained by means of analysis and
via MC simulations for nS D 15 000 valid samples and
with a histogram of nB D 150 bins.

3.3. Measuring the performance of
efficient random generation

In this part, we are interested to quantify the performance
of the obtained efficient RNG. Thus, we want to deter-
mine an expression for the corresponding AR. Following
the logic detailed previously, the event of accepting a sam-
ple is defined as a subset of the universal space� D fA, Rg.
Consequently, the AR as a function of RCR can be
determined by (4).

pADPr fA � �gD
Z 1

xD�1
fX.x/dx

Z 1
xD�1

�b.x/dxD1

Z 1
xD�1

kıX.x/dxD1


kmin

Z 1
xD�1

UX
�
x˛ , xˇ

�
dx

D1=kminD1
ı

f max
X

�
xˇ � x˛

�
D
�

L2 � 2�r2
0

.
3
p

3
�.

L .2L � r0/D
�
�2 � 2�

.
3
p

3
�.

� .2� � 1/ �>2

(4)

At this point, the natural intrigue is to analytically obtain
the optimum RCR value that maximizes pA D pA.�/,
which can be obtained by dpA.�/=d� D 0; therefore
resulting in a unique feasible solution given by: �opt D�

4� C

r
2�
�

8� � 3
p

3
�


3
p

3 
 4.57. Hence, the

efficient random generation approach developed can fur-
ther be improved when � D �opt, which essentially
ensures an AR of pA

�
�opt

�

 0.529. Pursuing this

further, it is also worthwhile to characterize the AR as
the RCR progressively increases, which can be evaluated
by: lim

�!1
pA .�/ D 1=2. In fact, it can be shown that

pA D 0.5 is indeed a horizontal asymptote (HA) of the
pA.�/ function.

In (4), we theoretically derived an expression for the
AR. Conversely, we may also define an MC estimator for
the acceptance probability of samples numerically assessed
by QpA D nS=nT such that nS 2 N represents the num-
ber of accepted samples, and nT 2 N� is the total number
of randomly generated instances for a particular simula-
tion realization. Assuming that nT is deterministic, then
the number of accepted samples will be random with dis-
tribution, NS � Binomial.nS, nT , pA/, having mean and
variance equal, respectively, to mNS D nT pA and �2

NS
D

nT pA.1 � pA/. Then the statistics of the AR estimator can
be shown to equal:

mQpA
D mQpA

.�/ D E ŒQpA� D E ŒNS=nT � D mNS=nT D pA

D
�
�2 � 2�=3

p
3
�
=� .2� � 1/ (5)

�2
QpA
D�2
QpA
.�, nT /DE

h�
QpA � mQpA

�2i
DE

h�
NS=nT�mQpA

�2i
D �2

NS
=n2

T D pA .1 � pA/=nT

D
n
1�
�
��4�=3

p
3
�

2=�2.2��1/2
o
=4nT

(6)

Therefore, from (5), we realize that the AR estimator is
unbiased, and from (6), we note that it is consistent because

lim
nT!1

�2
QpA
D 0; meaning that an increase in nT will

improve this estimator at the expense of running time com-
plexity. Furthermore, it is desired to minimize the variance
of the AR estimator in order to enhance its predictability.
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Indeed, through the optimization of @�2
QpA
.�, nT /=@� D

0 and the plot of Figure 5, we determine that ��min D

�opt is a feasible stationary point, and also detect an HA
at �2
QpA
.1, nT / D 1=4nT . Overall, we remark that selecting

� 
 4.57 has a dual statistical advantage: (i) it max-
imizes the AR for RNG; and (ii) it minimizes the AR
estimator variance.

For further insight of the AR behavior, in Figure 6,
we show the corresponding theoretical and experimental
plots. In fact, during MC simulations, for each � value,
nS D 10 000 accepted samples are sought to estimate
the AR. Overall, this RNG approach is reasonably simi-
lar to a coin toss for all possible realization because the
AR of the efficient algorithm in Figure 3 is confined to:
0.47 < pA .�/ < 0.53 � 2 .2,1/.

3.4. Geometrical deployment on the
Euclidian plane

Efficient deployment along the x-axis was developed
in the previous subsections. In this part, we will extend
the treatment by deriving the spatial emplacement along
the y-axis in order to generate random coordinates on the

Euclidian plane. To do this, we require the conditional PDF
that we obtain by the use of (1) alongside the deployment
support of Figure 2, which produces:

f YjXDOx.y/ D fXY .Ox, y/=fX.Ox/

D UY

�q
r2

0 � Ox
2,
p

3Ox

	
� 1 .r0=2 � Ox � r0/

C UY

�
0,
p

3Ox
�
� 1 .r0 � Ox � L=2/

C UY

�
0,
p

3 .L � Ox/
�
� 1 .L=2 � Ox � L/

(7)

In essence, depending on a particular sampling range
for Ox, the related PDF is then considered in the expression
of (7) for randomly emulating the y-component of an
arbitrary node. On the whole, the deployment complexity
for the optimum spatial random generation can be assessed
by integrating the algorithm of Figure 3 and the result
formulated in (7) together: O.nT / C O.nS/ � O.nS/.
Namely, the deployment of nS random terminals has a
computational cost of O.nS/ provided � � 2. At last,
to geometrically demonstrate the analysis reported in this

Figure 5. Impact of radius to the close-in distance ratio (RCR) on the acceptance rate estimator variance.

Figure 6. Acceptance rate for efficient random generation versus radius to the close-in distance ratio (RCR).
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Figure 7. Random spatial emulation as a function of network scale and radius to the close-in distance ratio values.

section, we simulated in Figure 7 the random deployment

for different nodal scales and RCR values.

4. LARGE-SCALE
FADING ANALYSIS

4.1. Spatial density model in polar notation

The spatial behavior elaborated in the previous section

was performed as groundwork for general network emu-

lation, formulation of the LSF density, and to numerically

verify the authenticity of the analysis. In this part, we

are interested to move forward by describing the stochas-

tic characteristics of the channel-loss between an arbitrary

node and a reference located at the origin of the service

area. Given the nature of this problem, analysis in polar

notation is favored, thus the joint density changes to:

fR� .r, 	/D fXY .x, y/j xDr cos 	
yDr sin 	

�

ˇ̌̌
ˇ̌det

 
@x=@r @x=@	

@y=@r @y=@	

!ˇ̌̌
ˇ̌

D12 � r=
�

3
p

3L2 � 2�r2
0

�
.r, 	/2DP

FF � R2
C

(8)

Using the law of sines to the marked blue triangle shown

in Figure 2, an expression for the coverage radius can be

obtained by r0 � r � r .	/ D
p

3L=2 sin .2�=3 � 	/ over

0 � 	 � �=3. And therefore, the associated polar-based

domain DP
FF can be formulated as follows:

DP
FF D

8̂̂̂
<̂
ˆ̂̂̂:
.r, 	/ 2 R2

C;

.r0, L/ 2 R2
C :

r0 < L=2

ˇ̌̌
ˇ̌̌
ˇ̌

0 � 	 � �=3 : r 2
h
r0,
p

3L
.

2
i

;

0 � 	 � arcsin
�p

3L
.

2r
�
� �=3 : r 2

hp
3L
.

2, L
i

;

2�=3 � arcsin
�p

3L
.

2r
�
� 	 � �=3 : r 2

hp
3L
.

2, L
i

9>>>>=
>>>>;

(9)
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4.2. Characterizing radial distribution

In past contributions, the interpoint PDF has been shown
between a fixed reference at the vertex of a triangle and
a random point [22], the centroid of a polygon and a ran-
dom point [23], and more generally among two arbitrary
nodes inside a polygon [24]. Meanwhile, for the punctured
hexagonal region of Figure 2, using (8) and (9), the radial
PDF between a BS and a node can be obtained by:

fR.r/ D
Z
.r,�/2DP

FF

fR� .r, 	/ d	 D
n
4�r

. �
3
p

3L2 � 2�r2
0

�o
� 1
�

r0 � r �
p

3L=2
�

C
n
8r
n
3 arcsin

�p
3L=2r

�
� �

o.�
3
p

3L2 � 2�r2
0

�o
� 1
�p

3L=2 � r � L
� (10)

This interpoint PDF can then be substantiated via the
simulation results shown in Figure 8, where the theoretical
and MC plots for a unity cell are accordingly graphed over
two RCR values. In principle, for a particular � value, the
spatial position of nS D 25 000 random nodes is generated
in a manner similar to that carried in Figure 7. Then, the
measure from the arbitrary node to the BS is computed, and
an nB D 250 bin histogram is constructed and accordingly
scaled for plotting the PDF.

4.3. RNG based on radial distribution

Having fR.r/ leads us to appropriately remark that in order
to verify the anticipated analytical formulation for LSF
density, random MC data can also be generated straight
from the radial distribution in addition to the Cartesian-
based RNG analysis described in Section 3. To contrast
the computational suitability of this generation option, we
thus need to identify the RNG attributes of the radial
PDF. It can in fact be shown that the most efficient ITM
approach is unsuitable given that a closed-form ICDF is
unattainable. As a workaround, the modified version of the

ARM procedure can be considered for enhancing the gen-
eration performance of the radial probability distribution.
Following the notation derived in (4), the utmost AR for
the modified iterative algorithm becomes:

pRadial
A .�/D1

ı
f max
R

�
rˇ�r˛

�
D1


max
r2R
f fR.r/g � .L�r0/

D 3
�
�2 � 2�

.
3
p

3
�.

2�� .� � 1/ � > 2

(11)

Additionally, we can find the intersection point for the
AR among the Cartesian and radial notations, which is
located at: �I D .2� � 3/=2.� � 3/ 
 11.59. For com-
parison purposes, in Figure 9, we graph the AR for both
of these RNG approaches. As shown, the AR for the
radial distribution is monotonically decreasing, whereas
the Cartesian alternative is not monotonic at all. More-
over, the HA of (11), which equals to lim

�!1
pRadial

A .�/ D

3=2� 
 0.48, reveals that Cartesian-based RNG is more
performant as the RCR extends beyond �I . Overall, the
optimum generation approach can thus be improved by
partitioning the RCR range such that the AR is maxi-
mized. This leads us to observe the following association
for further improvement to efficient random generation:

2 < � � �I $ radial RNG

� > �I $ Cartesian RNG
(12)

4.4. Distribution of the average path-loss

In general, it is shown (say [1]) that the average
PL for mobile cellular communications is modeled by

Figure 8. Radial distribution for nodal geometry via stochastic simulations. PDF, probability density function; BS, base-station;
MS, mobile-station.
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Figure 9. Efficient acceptance rate for random number generation based on radial and Cartesian analysis. RCR, radius to the close-in
distance ratio.

LPL.r/ D LPL.r0/ � .r=r0/
nPL , where nPL 2 RC : nPL > 1

is the PL exponent, and r0, r 2 R2
C : r0 � r denote,

respectively, the close-in distance and the internodal gap.
For analytical suitability, this expression may be mapped
to simpler notations, where the average PL for an L sized
cellular network at a generic internodal gap is character-
ized by w.r/ � LPL.r/dB D ˛ C ˇ log10.r/ over 0 < r0 �

r � L. Also, its inverse, which will be required in the next
step, equals to r.w/ D 10.w�˛/=ˇ where w 2 Œw0, wL� are
breakpoints interrelated to (10).

The objective now is to characterize the distribution
of the average PL overlaying the randomness of nodal
geometry; therefore, we perform the following stochastic
transformation:

w D w .r � fR .r// � LPL .r/dB � fW .w/ D fR .r D r .w//
ı
jdw .r/=drjrDr.w/

) fW .w/ D
fR
�

10.w�˛/=ˇ
�

ˇ̌̌
ˇ

ln.10/r

ˇ̌̌
rD10.w�˛/=ˇ

D
ln .10/ � 10.w�˛/=ˇ

ˇ

8̂̂̂
<
ˆ̂̂:

4�r�
3
p

3L2�2�r2
0

� � 1 �r0 � r �
p

3L
.

2
�

C
8r
n
3 arcsin

�p
3L
.

2r
�
��

o
�

3
p

3L2�2�r2
0

� � 1
�p

3L
.

2 � r � L
�
9>>>=
>>>;

rD10.w�˛/=ˇ

D
4 � ln .10/ � 102.w�˛/=ˇ

ˇ
�

3
p

3L2 � 2�r2
0

�
8<
:
� � 1 .w0 � w � wI/ � 2� � 1 .wI � w � wL/

C 6 arcsin
�p

3L
.

2 � 10.w�˛/=ˇ
�
� 1 .wI � w � wL/

9=
;

(13)

4.5. Large-scale fading density
with shadowing

In this part, we will supplement the PDF for the aver-
age power loss by introducing the impact of shadowing.
In fact, this critical component analytically characterizes
the implication of scatterers in the propagation channel;
thus, incorporating it in the PL model is of paramount

importance. Basically, shadowing is accounted for by
merely adding a random variable‰S�dB to the average PL.
It is imperative to note that the randomness of shadowing
and the average PL are statistically uncorrelated. There-
fore, the overall LSF distribution is obtained by convolving
the corresponding density functions:

LPL.r/dBD
n
LPL.r/dB C‰S�dB

o
� 1 .r0 � r � L/ � fLPL .l /

D. fW � f‰/ .l/

) fLPL .l/D
Z 1
�D�1

fW .
/„ƒ‚…
path-loss

� f‰ .l�
/„ ƒ‚ …
shadowing

d
,
Z 1
�D�1

f0 .
/ d


l 2 R (14)

The shadowing entity is actually described by a zero-
mean log-normal distribution with standard deviation
(SD) �‰ , that is, ‰S�dB � f‰ .
/ D NS

�
0, �2

‰

�
. And

therefore, with some analysis, it can be demonstrated
that f‰ .l � 
/ D NS

�
l, �2
‰

�
: 
 2 R, l 2 RC. As

for the fW .
/ part in (14), it is obtained by the notation
in (13) following an exchange of w by 
 . Consequently,
the integrand of (14) reduces to the expression in (15),
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and having a domain which is limited by: f
 2 Rg \
f0 < w0 � 
 � wLg D

˚

 2 RC

ˇ̌
w0 � 
 � wL

�
.

f0 .
/ D fW .
/ �NS

�
l, �2
‰

�
D

2
p

2 ln .10/ � 102.��˛/=ˇ

p
�
�

3
p

3L2 � 2�r2
0

�
ˇ�‰

� exp
n
� .
 � l/2

.
2�2
‰

o

�
n
� � 1 .w0 � 
 � wI/ � 2� � 1 .wI � 
 � wL/C 6 arcsin

�p
3L
.

2 � 10.��˛/=ˇ
�
� 1 .wI � 
 � wL/

o

D
2
p

2 ln .10/ � 10�2˛=ˇ

p
�
�

3
p

3L2 � 2�r2
0

�
ˇ�‰

� exp

q.�/‚ …„ ƒn
2 ln .10/ 
=ˇ � .
 � l/2

.
2�2
‰

o

�
n
� � 1 .w0 � 
 � wI/ � 2� � 1 .wI � 
 � wL/C 6 arcsin

�p
3L
.

2 � 10.��˛/=ˇ
�
� 1 .wI � 
 � wL/

o

(15)

Next, we must integrate the expression of (15); however,
this undertaking will require various intermediate steps
which are respectively detailed in Appendix A.

As a reminder from (14), the l entry represents a random
sample of the LSF between a reference and an arbitrary
terminal. Because of the log-normal nature of shadowing,
this variable is expected to be in R, yet from a practical
standpoint, it is a.s. element in RC. For further preci-
sion, the range for this RV can additionally be narrowed
down. Indeed, the lower extremity of the LSF measure is
analyzed in (16), where the optimization is split because
the contributions from the average PL and shadowing are
independent of each other. By the same token, the higher
extremity for an L size cellular network model is obtained
in (17).

l0 , min
.r,�‰/2R2

C

fLPL .r/dBg D min
r2RC

n
LPL .r/dB

o

C min
�‰2RC

n
‰S�dB � NS

�
0, �2

‰

�o

 Ql0

D ˛ C ˇ log10 .r0/ � 3�‰

(16)

lL , max
.r,�‰/2R2

C

fLPL .r/dBg 

QlL D ˛Cˇ log10 .L/C3�‰

(17)

In fact, these results respectively provide w.h.p. an
approximation for the LSF extremities because within
three SDs most randomly generated samples will be
accounted for, that is, with a confidence interval (CI) repre-

sented by: Pr
nˇ̌̌

l � LPL .r/dB

ˇ̌̌
� 3�‰

o

 0.997300. Taken

as a whole, we thus identify a tighter support range for l,
given by:

n
l 2 RC

ˇ̌̌
0 < Ql0 <Ï l <

Ï
QlL <1

o
(18)

At this moment, we have all the necessary features
to analytically assemble the PDF of the channel-loss. To
be precise, from (A.3), we recognize that the density
function is composed of two parts. The first part, which is
designated by K0, is identified in (A.2). The second part,
namely ILSF .l/, is obtained in (A.8), and its associated
variables were solved in (A.9). Next, the domain of the
density function was detailed in (18), where the related
boundaries were assessed in (16) and (17). Finally, the
exact closed-form stochastic statement for the PDF of the
LSF between a randomly positioned node and a reference
BS over an MCN model is explicitly shown in (19). Over-
all, the derived density result is generic because of the
changeable parameters specified by the Eƒ array.

fLPL

�
l, Eƒ

�
D
n
4 � ln .10/ � 102.l�˛/=ˇ
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3
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3L2 � 2�r2
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�o
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��p
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.
ˇ
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C3
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2=� �
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exp
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�z2

ı
2
�
� arcsin

�p
3L � 10��‰z=ˇ

.
2 � 10fˇ.l�˛/C2 ln.10/�2

‰g=ˇ
2
�

dz

9=
;

 Eƒ D f˛,ˇ, �‰ , r0, Lg 2 R5
C 0 < Ql0 <Ï l <
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QlL <1

Q .z/ D erfc
�

z
.p

2
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2 D
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�o.

2

 z0 .l/ D
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�
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102�2
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 zI .l/ D

�
˛ � lC ln

��p
3L
.

2
�ˇ=ln.10/


102�2
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 zL .l/ D
n
˛ � lC ln

�
Lˇ=ln.10/

.
102�2

‰=ˇ
�o.
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 Ql0 D ˛ C ˇ log10 .r0/ � 3�‰  QlL D ˛ C ˇ log10 .L/C 3�‰ (19)
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5. EXPERIMENTAL VALIDATION BY
MC SIMULATIONS

Here, we will authenticate the expression for the LSF
distribution of (19) by means of stochastic simulations.
Generally speaking, the approach for the validation process
is broken-down into three major steps: (i) for a given lattice
structure and dimensions, the random network geometry of
wireless nodes is emulated via MC approach; (ii) the LSF
density for a particular channel environment is numerically
estimated using the emulated spatial samples; and (iii) the
analytically derived PDF is plotted and then compared with
the scholastic estimation.

It is imperative to emphasize that the tractable expres-
sion of (19) is fully generic and thus can be adaptable for
any cellular application and wireless technology, as long
as user’s spatial geometry is assumed to be random and
uniform over an MCN grid. Although the obtained result
is generic in nature, yet to examine its correctness, we
will exclusively consider the channel parameters of IEEE
802.20 [25] for an urban macrocell as specified in Table III.
The actual details for the MC simulations are outlined
as follows:

 In Table III, the transmission radius L can take
different values. We will, however, consider a cel-
lular size of 600 m, which translates into an RCR
of ~17.14. Given this RCR value, we therefore
realize from (12) that Cartesian-based RNG is more
efficient.

 An nS D 10 000 random samples for nodes 2D
spatial position is required. In fact, the set of Oxi :
i D 1, 2, � � � , nS random components are generated
from the algorithm of Figure 3. After, based on these
values, the Oyi counterparts are obtained using the
approach described by (7).

 The distance Ori between the reference BS and random
nodes is then calculated using the simple Pythagorean
theorem.

 After that, the average PL for each of the nS random
samples is computed by:

ONli , LPL .Ori/dB D ˛ C ˇ log10 .Ori/ i D 1, 2, � � � , nS

(20)

Table III. MBWA channel model for urban macrocell.

IEEE 802.20 propagation parameters

Propagation model : COST -231 Hata-Model
Operating frequency : 1.9 GHz
Support range : r0 D 35m � r � L

600 � L � 3500 m
Channel-loss : ˛ D 34.5 dB

ˇ D 35 dB
Shadowing : �‰ D 10 dB

MBWA, mobile broadband wireless access.

 Next, values for shadowing are generated such that
Oni � N .0, 1/ are samples from a standard normal
distribution in order to obtain instances of LSF as
expressed by:

Oli,LPL .Ori/dBD
ONliC O iD

ONli C �‰ Oni iD1, 2, � � � , nS
(21)

 The uppermost plot of Figure 10 shows a scatter
diagram for the LSF as a function of the BS to
node interpoint range. Specifically, each of the 10 000
instances is represented by a random point. For
perspective to this MC realization, three determin-
istic plots, namely, LPL .r/dB, LPL .r/dB � 3�‰ , and
LPL .r/dB C 3�‰ over r 2 Œr0, L� are also shown so
as to characterize the average PL and the ~99.7%
CI of LSF caused by shadowing. Indeed, as notice-
able from the figure, only a negligible of ~0.3%
of samples can be found outside the delineation of
the CI.

 Then, based on the described scatter plot, a histogram
for the LSF measure is constructed. In this simula-
tion, an nB D 100 bin histogram is considered with
equal width designated by �lB 2 RC. Precisely,
the bars of the histogram are positioned next to each
other with no spacing among them. As for the quan-
tity of occurrence per bar, they are accordingly scaled
to reflect an estimate of the PDF, that is, the occur-
rence is divided by the amount of random samples
and the bin width. Once scaling is performed, we
obtain the PDF estimation at discrete points, namely,
pdfj : j D 1, 2, � � � , nB.

 Also, the CDF of the LSF measure for randomly
positioned nodes is approximated by the following
recursive relationship:

cdf1 D pdf1 ��lB

cdfj D cdfj�1 C pdfj ��lB j D 2, 3, � � � , nB
(22)

 As shown in Figure 10, the PDF estimation is per-
formed over two values of nS. As expected, an
increase of random samples produces a better esti-
mate that appropriately matches the theoretically
derived density function of the LSF.

 We remarked earlier in Table III that the cellular
size varies from L D 600 ! 3500 m. Therefore,
we find it intriguing to randomly simulate the LSF–
PDF as L changes. The result of this undertaking
is shown in Figure 11. It is worth noting from the
simulation that an increase in the cellular dimension
raises the channel-loss interval, and as a result, the
first-moment of the PDF is further shifted to the right.
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Figure 10. Verifying the analytically derived formulation for the large-scale fading distribution. PL, path-loss; CI, confidence interval;
PDF, probability density function; CDF, cumulative distribution function.

Figure 11. Large-scale fading distribution for centralized connectivity over different cellular sizes. PDF, probability density function.
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Also, it is obvious that the analytical derivation of
the PDF and the estimation are properly congruent to
each other.

6. CONCLUSION

The main objective of this paper was to describe the
channel-loss density for a random network with respect
to its service provider. In fact, such density can be
obtained numerically using MC simulations. However, this
approach is computationally expensive, and also it does not
produce a tractable and generic stochastic statement use-
ful for analysis and interplay of input/output parameters.
Consequently, in order to mathematically characterize with
great precision the manifestation of the channel decay, we
progressed into various technical steps.

In particular, we first had to explain the essential ground-
work for the derivation of LSF density by specifying and
combining the analytical features of the spatial homogene-
ity, the geometrical attributes of the MCN lattice, and the
characteristics of radiation.

Next, we developed an efficient approach for emulating
the geometry of the random MCN geared specifically for
LSF analysis. This was performed as a preliminary step in
deriving the LSF distribution and also for verifying the
authenticity of the derivation via actual spatial deployment.
We also measured the performance of the RNG, and
its stochastic features were theoretically formulated and
experimentally evaluated.

Equipped with all the necessary steps, we then analyti-
cally derived the exact and closed-form expression for the
LSF density function between a prepositioned reference
BS and a randomly deployed node. We then performed
various MC simulations in order to ensure and confirm
the veracity of the result. To be precise, in this derivation,
we took into account a number of fundamentally important
elements, namely, the cellular structure of the architec-
ture, the nodal spatial emplacement, the far-field effect of

the reference antenna, the PL behavior, and the impact of
channel scatterers.

In fact, the final and overall stochastic expression of
the LSF–PDF expressed in (19), is entirely generic and
can directly be adjusted to any cellular size L, close-in dis-
tance r0, PL parameters ˛ and ˇ, and shadowing features
described by its SD �‰ . That is to say that the stochas-
tic formulation was attained in such a way that it could be
applied to numerous MCN applications and technologies
having a particular scale, coverage, and channel features. In
other words, as shown in Figure 12, the reported predictive
result is adaptable via the insertion of related variables
to the different network architectures, such as, femtocell,
picocell, microcell, and macrocell systems.

Also, given the diversity of the transmission coverage for
each of the listed network realizations, it is thus evident to
recognize the variability of the RCR. Notably, for mobile
applications that operate with microcell or macrocell
networks, the RCR is generally in the order of ten or
greater. As for femtocell and picocell communications, the
RCR is typically smaller than this value. Therefore, when
the RCR has a slighter level, the significance of the BS
far-field radiation is more prominent. On the other hand,
a superior RCR is marginally impacted by the far-field
region. Nonetheless, this EM propagation phenomenon
was explicitly considered in the derived density of the LSF
model in order to characterize the laws of communications
in a rigorous manner, and also to ensure the soundness of
the stochastic expression for all type of cellular systems,
irrespective of the network scheme.

Finally, as remarked in earlier parts of the paper, it is
worthwhile to emphasize that the closed-form analytical
expression of the channel-loss PDF will be applicative for
all cellular network cases shown in Figure 13, irrespective
of the considered sectoring type and the cluster rotation
angle �.

Figure 12. Feasibility of the multi-cellular network model for various deployment applications and purposes.
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Figure 13. Applicability of the formulated large-scale fading (LSF) distribution for different random deployments. BS, base-station.

APPENDIX A: INTEGRATING
EQUATION (15)

First, we arrange (15) by completing the square of
the quadratic function q .
/ inside the exponential so
that it becomes of the form: q .
/ D a .
 � h/2 C k.
After some arithmetical manipulations, we then recognize
that: a D �1

ı
2�2
‰

, h D
˚
lC 2 ln .10/ �2

‰

ı
ˇ
�
, and
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�
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.
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exponential part of (15) can be reorganized:
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 (A.1)

After substituting (A.1) into (15), we then find that:
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o
(A.2)

At present, the function in (A.2) is adequately ordered
for the purpose of being integrated, where the 
 indepen-
dent expressions are assigned to K0. Taken together, the
LSF distribution of (14) can be split into three parts where
each has a particular identifier:

fLPL .l/ D
Z 1
�D�1

f0 .
/ d
 D K0

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:
Z wI

�Dw0

f .1/0 .
/ d
„ ƒ‚ …
,I
.1/
LSF.l/

C

Z wL

�DwI

f .2/0 .
/ d
„ ƒ‚ …
,I
.2/
LSF.l/

C

Z wL

�DwI

f .3/0 .
/ d
„ ƒ‚ …
,I
.3/
LSF.l/

9>>>>>=
>>>>>;„ ƒ‚ …

,ILSF.l/

l 2 R (A.3)

Following the first integration, we obtain (A.4), where
z D z .
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��ı

�‰ , and Q .z/ is

an alternate format of the complementary error function
(ERFC).
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The second integration of (A.3) is relatively similar to
(A.4), and so it can readily be solved as follows:

I.2/LSF .l/ D 2�
p

2� � �‰ � fQ .z/g
zL
zDzI

(A.5)
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At this point, we could obtain an intermediate result by
adding (A.4) and (A.5) together:
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(A.6)

As for the third integration defined in (A.3), it is manifested
by:
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If we combine the results of (A.6) and (A.7) together, we
then obtain the notation in (A.8), where z D z .w .r// is a
composed function of PL and geometrical separation as
detailed by (A.9).
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