Skip to main content
Presentation
Finite Element Analysis of Various Design Projectiles as Bullet Models
ASME 2015 International Mechanical Engineering Congress and Exposition (IMECE 2015)
  • Mosfequr Rahman, Georgia Southern University
  • Steven Chrysosferidis, Georgia Southern University
  • Sirajus Salekeen, Georgia Southern University
  • Adam Chevalier, Georgia Southern University
  • David Bell, Georgia Southern University
  • Bowen Jones, Georgia Southern University
  • Adam Barlow, Georgia Southern University
Document Type
Contribution to Book
Publication Date
11-13-2015
DOI
10.1115/IMECE2015-53007
ISBN
978-0-7918-5743-4
Abstract

The objective of this research work was to perform a flow simulation around a running bullet and then compare and analyze three types of widely used bullet models. These are 7.62mm × 39mm, 7.62mm × 51mm, and 5.56mm × 45mm caliber popular NATO rounds respectively. Due to limited processing and computational resources, these bullet are modeled as cylindrical projectiles of similar length and diameter. Finite element analysis (FEA) are performed on these models using ANSYS explicit dynamics analysis code to investigate the effect of high velocity impact of these projectiles on a concrete plate. Three different types of meshing (coarse, fine, and fine with curvature) for each of these three cases have been used. Each projectile was fired at a different velocity. These velocities are selected in consultation withHornady Manufacturing, Inc which has done extensive research on these bullets. The selected firing velocities for 7.62mm × 39mm, 7.62mm × 51mm, and 5.56mm × 45mm caliber bullets are 2021ft/s, 2539.4ft/s 2706.7ft/s respectively.

Overall, the simulation result of explicit dynamics clearly demonstrated cavitation and mushrooming of projectiles when impacting a 0.25 inch concrete plate. The 5.56mm × 45mm projectile seemed to have the largest overall total deformation values of 2.0303, 1.0487, and 0.26079 feet as obtained from simulation of the three types of mashing. This can be attributed due to the higher velocity (2706.7ft/sec) as compared to the other two cases. Similarly, the 7.63mm × 39mm has the highest average change of velocity of 144.7, 92.3, and 99.6ft/sec respectively from the three types of meshing among the three bullets which can be attributed due to its lowest impact velocity (2021ft/s).

Citation Information
Mosfequr Rahman, Steven Chrysosferidis, Sirajus Salekeen, Adam Chevalier, et al.. "Finite Element Analysis of Various Design Projectiles as Bullet Models" Houston, TexasASME 2015 International Mechanical Engineering Congress and Exposition (IMECE 2015) Vol. 10 (2015) p. V010T13A006
Available at: http://works.bepress.com/mosfequr-rahman/39/