Skip to main content
Mechanistic Implications of Mouthpiece Design Geometry and Powder Mixture Homogeneities on Successful Generation of Aerosolized Submicron Particles from Respiratory Drug Delivery Devices
Technology Faculty Publications and Presentations
  • Mohammed Ali, The University of Texas at Tyler

This paper presents the mouthpiece design geometry and powder mixture homogeneity effects of three respiratory drug delivery devices (RDDDs) to the aerodynamic and electromechanical properties of generated inhalable submicron particles. These devices are commonly known as dry powder inhalers (DPIs). Currently, DPI is considered as the preferred type of pulmonary drug administration device with the greatest potential for other biomedical applications. The aerosolized submicron particles generation and inhalation from the DPIs gained much attention in the late 1980s when Montreal protocol was designed to discourage production of chlorofluorocarbons (CFC) propellant, a widely used aerosolization component in the popular metered dose inhaler. Montreal protocol on controlling ozone depleted CFC chemicals became a major drive for the design and manufacturing technology of the DPI. The successful delivery of drugs into the deep lung depends on various aerodynamic and electromechanical properties of generated particles from the devices. Effects of the mechanistic behaviors of the DPI design geometry, and integration between device performance and powder formulations are warranted to be investigated. An electronic single particle aerodynamic relaxation time analyzer, which functions on the Laser Doppler Velocimetry principal, was employed to measure submicron particles’ charge and size in real time. Analyzed results revealed that the generated aerosol particles from all three DPIs were found to not only have different size distributions but also varied in their charge distributions. The net charge to mass ratio of DPI 1, 2, and 3 particles were 3.80 µC/g, 1.37 µC/g, and 1.45 µC/g, respectively. Count and mass distributions of the particles were reproducible (p

International Journal of Modern Engineering
Date of publication
Persistent identifier
Document Type
Citation Information
Ali, M. (2019). Mechanistic implications of mouthpiece design geometry on successful generation and delivery of aerosolized submicron to nano-sized particles from respiratory drug delivery device. International Journal of Modern Engineering, 20(1), 12-19.