Skip to main content
Article
Computational Fluid Dynamics Simulation of Inhaled Submicron Bioaerosol Particles Flow and Deposition in the Human Lung
Technology Faculty Publications and Presentations
  • Mohammed Ali, The University of Texas at Tyler
Abstract

This study concerns computational fluid dynamics (CFD) modeling and simulation of the mechanistic phenomena of inhaled submicron bioaerosol particles while flowing through surrogate in-silico human respiratory airways. Investigated phenomena include the effects of four aerodynamic and electromechanical mechanisms: 1) inertial impaction (IIP), 2) Brownian diffusion (BD), 3) gravitational sedimentation (GS), and 4) electrostatic charge forces (ECF) that interact with inhaled particles. A commercial finite-volume code, ANSYS Fluent, enhanced with user-supplied programs in Visual C++, was employed. Tracheobronchial (TB) geometry was developed using ANSYS Design-Modeler and morphological lung dimensions specified in Ewald R. Weibel’s model of dichotomous lung morphometry. Simulation results were compared with established mathematical models for inhaled bioaerosol particles’ IIP, GS, and ECF depositions. Although, the IIP is still a dominant deposition mechanism for submicron particles in the TB airways under light physical activity breathing condition (Q = 28.3 l/min), the BD, GS, and particle intrinsic electrostatic charge may play several roles as well. Moreover, the GS is negligible for smaller particle size (dp µm), whereas it becomes dominant for larger particles (dp >1 µm). The occurrences of IIP cause the location of deposition “hot spots” in the bifurcating airway where sharp bends exist. The GS has fifteen times stronger deposition effects on a 10 µm particle than on a 1 µm particle. A 50 percent increase in electrostatic charge per particle can double its deposition probability as well. Smaller (dp ≤ 1µm) charged particles experience higher (one-log) image force than larger (dp ≥ 10µm) particles while carrying the same number of elementary charges.

Publisher
International Journal of Modern Engineering
Date of publication
12-1-2021
Language
English
Persistent identifier
http://hdl.handle.net/10950/3855
Document Type
Article
Citation Information
Ali, M. (2021). Computational Fluid Dynamics Simulation of Inhaled Submicron Bioaerosol Particles Flow and Deposition in the Human Lung. International Journal of Modern Engineering, 22(1), 5-11.