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and
M. Hafez

Dept. of Mechanical Engineering, U.C. Davis.

Abstract

Convergence of iterative methods for the solution
of the steady quasi-one-dimengional nozzle problem
with shocks is considered. The finite-difference
algorithms obtained from implicit schemes are used
to approximate both the Euler and Navier-Stokes
Equations. These algorithms are investigated for
stability and convergence characteristics. The
numerical methods are broken down into their
matrix-vector components and then analyzed by
examining a subset of the eigensystem using a
method based on the Arnoldi process. The
eigenvalues obtained by this method are accurate to
within 5 digits for the largest ones and to within 2
digits for the ones smaller in magnitude compared to
the eigenvalues obtained using the full Jacobian. In
this analysis we examine the functional relationship
between the numerical parameters and the rate of
convergence of the iterative scheme.

Acceleration techniques for iterative methods
like Wynn's e-algorithm are also applied to these
systems of difference equations in order to accelerate
their convergence. This acceleration translates into
savings in the total number of iterations and thus the
total amount of computer time required to obtain a
converged solution. The rate of convergence of the
accelerated system is found to agree with the
prediction based on the eigenvalues of the original
iteration matrix. The ultimate goal of this study is
to extend this eigenvalue analysis to multi-
dimensional problems and to quantitatively estimate
the effects of different parameters on the rate of
convergence.
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Int ion

Over the past decade a multitude of algorithms
and computer codes has evolved in the attempt to
model serodynamic flows. A major expense in these
efforts is the large amount of computer time required
for the solution of any realistic problems. In
particular, large numbers of iterations are required to
achieve convergence of the solutions. The effort to
minimize these costs has spawned the development of
many numerical methods and acceleration techniques
whose time iterations are designed to converge
rapidly to the steady state solution of the governing
equations. The success of these methods has been
sporatic and to date there has been little
mathematical analysis on what factors determine
whether a given numerical method or acceleration
technique will result in more rapid convergence
particularly when applied to a system of non-linear
partial differential equaticons.

In the present study we utilize acceleration
techniques such as Wynn's e-algorithm and analysis
techniques such as eigensystem analysis to
numerically study the convergence properties of an
iterative scheme applied to the quasi-one-
dimensional Euler and Navier-Stokes equations for
flow through nozzles with shocks. Using a time-
dependent eigensystem analysis we study the
convergence and stability properties by analyzing the
dependence of convergence of the code on the
discretization technique, boundary conditions, time-
step, number of grid points, and the physics of the
problem.
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An outline of the equations and the iterative
scheme is presented followed by a description of the
method of Arnoldi and Wynn's e-algorithm.

II. i 1 i £m

The system of equations we are considering is:

9Q 1 0(aF) 1 8F
—— - —} ———-—E (1)
8t a & Re dx
where [ p pu
=loul, F=1pod® +p
| e ule + p)
[0 0
S = E% ’FV= Ty
L 0 f

p= (7—1)(e-%pu2), 2= %E

_ 4B Uy yariable cross-sectional
Tx = % %% area of the nozzle, where

a{x) = 14 * (1 - athroat)* x * {1-x), and

~18 ,2
f=“Tx+[_7€T)'(Pr) Fc)Hosxsl

Here Pr is the Prandtl number, Re the Reynolds
number, p the pressure, ¢ the speed of sound, F
the flux vector, p the density, u the velocity and e
the energy.

These equations are discretized in the following
way:

N+l N
Q—é—+ %'gk‘(“F)Nﬂ (2)
aFNe.‘i
Her 1 v
=5 YR

where h = At, and t = time.

.g§= %%: A% , & = Flux Jacobian.

The nonlinear terms linearized about QN are:

e d—E—;(QN“-QN) T (3a)
dQ
=M+ BT QM- 4. .. (ab)

Br=F+M Q"™-QN+.... (o

dF™ ds?
whereMN=--—%,BN=—-—-
dQ dQ

Substituting these equations into equation (1) we
obtain:

[1+3800 (50 & () Joa" 0

N
_ .ol v hd N
=hS§ +R-é33{—_--3—.a‘_((aF)

A combination of second and fourth order
dissipation terms of the following form is added:

~(1/8) AtV (0a[dy-d,A ¥V 1} A QF (5)

where ¢ = |u| + ¢, ¢? = (m)/p,

dy = &%, ¥ =|A ¥ p}/|p|,and

dy = g4 —min (g,, do)-
The parameter € which is denoted by EPS2 in the
rest of this paper, is chosen to be 1.0 and g =

EFPS4 = 0.01. The dissipation operator is nonlinear
and enhances the shock capturing accuracy of the
algorithm. The terms are added both explicitly and
implicitly to equation (4). The difference operators
are applied at all interior points. More details can be
found in {56}

The iteration process condenses to

MAQ =R (6)
where M i3 the matrix containing boundary
econditions, implicit smoothing and fluxes, and R is
the right-hand side which incorporates the source
vector S, the viscous fluxes and any explicit
dissipation terms. Since both M ™! and R are
functions of Q, we can thus wrile the iteration
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Process as:
Q" = F(Q") (7

where F(Q™) = Q" + M 'R.
For a more thorough discussion please see [4,5].
HI._Arnoldi's M lied to the Nozzl

To obtain a subset of the eigenvalues of the
above operator F(QN}, whose exact form at time t
is unknown, we use 4 method based on the Arnoldi
process [1]. Rather than form the matrix of the
systern analytically by hand, we use the computer to

linearize our system by numerically approximating
the Frechet derivatives where

%_5_ v F(Q+sv)51;'(Q—€V) + 0(?) (8)

v

where v is an arbitrary vector and £ = 0.001 *
(]]Qt|2/ ]|v||2). The method is capable of extracting a

subset of the total spectrum and only requires the
Frechet derivatives for arbitrary vectors v 10
accomplish this. The crux of the algorithm can be
condensed into the following. Starting with an
arbitrary starling vector v, , we construct m

orthonormal vectors spanning a Krylov subspace [2}:

T —1/2
Let e =(v;v;) /VI’

fork = 1,m:
k
Vg1 =Ae- E oL th—e Ae,
i=1
-1/2
hy b1y = = (Vg1 V1)

-1
a1 =M r) Vi

next k.
The m eigenvalues of the matrix H = Ihjk] are

approximations to the eigenvalues of JA], where
[A] = [dF/dQ] is the Jacobian matrix in our case.
These eigenvalues are a good approximation to the
desired subset of eigenvalues we seek. For a more
thorough discussion on the method please see [7,1}.
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Iv. W —~Algorithm appli Nozz)

To accelerate the convergence of our iterative
scheme we applied Wynn's e-algorithm [9] which we
now suInimarize.

Letel; =0, ef =Q% n20

where Q" is the solution vector at time t = n At,

no_ n-H +1 2
then g, , =¢p +(en ak)/y » 1,k20  (9)

where p2 (E;:'H—ek) (en+1 )

is the same as the mth order

Shanks transformation [3). If a table is constructed
consisting of columns e_ln,eon,eln,..., the odd

n
The value €om

columns can be eliminated leaving only the even

columns. The entries in these columns egm are

obtained by the following formula [3):

E=wN+wS+ # wgW + w,C (10)
where  w, =(62/a ),  w =(52/ﬂ2)»
=5/7) 4=1- 1o + 8wy,
—uN CJI,ﬂQ—IIS— ng,

and where the new value E is a combination of the
value to the North (N), the value to the soutk (S),
the value to the west (W) and the value in the center
(C). Except for the first column, where & = 0, the
value for # = 1. Please refer to {3,9] for details.

._Description of the Probl

We apply the numerical method presented in
Section II to calculate flow through a nozzle with
shocks in one-dimension under the following flow
conditions. The nozzle is of length 1, the area at
either end is 1, the area at the throat is 0.8 and the
location of the shock is at 0.7. At the entrance of the
nozzle, the Mach number is 0.553, the density is 1
and the pressure is 1.0. Although the viscous effects
are not important in this 1-D nozzle problem, they
are studied because of their importance in
multidimensional problems.
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VI, Numerical Results
(a) Application of Arnoldi's Method

When applying the algorithm based on the
Arnoldi Method outlined in section Il to the nozzle
code we note that the eigenvalues obtained from this
method {compared to the eigenvalues obtained with
the full jacobian) are accurate to within 107 for the
largest ones in magnitude, and accurate to within
1072 for the smaller ones in two iterations. For error
estimates please see [7].

(b) Eigensystern analysis of the 1-D Nozzle code

In this section we analyze how changes in the
numerical parameters of the iterative scheme affect

the rate of convergence of the calculations. More
precisely, we will discuss how changes in various
parameters affect the eigenvalues (and thus the rate
of convergence) of the nozzle operator {7) for the

problem described in section V. The parameters we
examine are (a) the number of iterations,
(b) grid size, (¢) Dirichlet and linear extrapolated
boundary conditions, (d} size of the timestep and
{e) addition of 2nd angd 4th order dissipation terms.
For the viscous case, we also study the effects on the
eigenvalues due to changes in the Reynolds number.
Results are discussed below and summarized in
Table la.

Presently, the discussion will be restricted to the
case of discretization of the Euler equations with
linear boundary conditions, and with the number of
grid points jmax = 100. The magnitude of the
largest eigenvalue | A i | for the inviscid equations at

iterations n = 50, 75, 100 and 200, is IA1| =

0.97519, 097175, 0.97042, 0.96936 respectively. The
magnitude of the largest eigenvalue decreases a3 n
increases and approaches the eigenvalue of the steady
configuration.  This indicates that the rate of
convergence may start out slowly but improves to
the asymptotic rate of convergence as the number of
iterations n increases. This is indicated in figure 6
where the slope of the residual approaches & constant
after about 125 iterations of the code. This behavior
is observed for the viscous case as well where
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Mllviscous = (.9792, 0.9761, 0.9746, and 0.9732

respectively at Re = 1000. The eigenvalues for both
of these cases are plotted in figures 1 & 2. Note that
in figure 1 there are two eigenvalues with negative
real parts denoted by the symbol € but plotted on
the positive real axis.

The number of spatial grid points (jmax) is a
measure of the size of the Jacobian dF/dQ. For
jmax = 10, 30, 50, 70, 90 and 100, and linear
boundary conditions, |,\1| = 0.8850, 0.9689,

0.9694, 0.9693, 0.9693, and 0.9693 respectively.
Initially |A1I increases as the number of grid points

increases until jmax = 50. As jmax increases, both
the total number of eigenvalues and the number of
eigenvalues of large magnitude increase.  For
jmax = 30 there are 12 eigenvalues greater than 0.5.
This numbet increases to 15 for jmax = 100. This
indicates that for this case, the rate of convergence
and acceleration methods such as eigenvalue
annihiliation will depend on the grid size as well as
other numerical parameters.

Boundary conditions affect convergence by
changing the magnitude of the largest eigenvalue. In
this study the resuits of applying linear extrapolated
boundary conditions and Dirichlet boundary
conditions are compared. The linear extrapolated
characteristic boundary conditions at the entrance
are obtained by forming a linear combination of the
solution in the previous step. The quantities at the
left boundary are:

pL=2py-pg (11a}
u, = (1/2) py(R1-R2) {11b)
e = py/(r1) + (1/2) oy, (11¢)

where R1 and R2 are the 1-D Riemann invariants of
the flow and the subscripts indicate the value of the
variable at that grid point. The Dirichlet boundary
conditions are taken to be the values obtained from
the exact solution. The maximum eigenvalue for the
case of linear extrapolated characteristic boundary
conditions is 0.96933 whereas it is 0.93951 for the
Dirichlet boundary conditions. This translates to
roughly one half the number of iterations required to
achieve maximum error in the residual of 1.0x107:0
using Dirichlet boundary conditions as compared to
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linear houndary conditions (see table Ia). We note
that a difference in the eigenvalues in the third digit
translates to roughly 20 iterations of the code with
linear extrapolated boundary conditions and 10
iterations of the code with Dirichlet boundary
conditions.

For both the Euler and the viscous results, the
eigenvalues with large absolute values are well

_ separated. This is expected since the local effects of

viscosity on the shock structure are minor. As a
result, the nozzle code is well suited for convergence
acceleration schemes.

For the viscous case, we calculate flow at

Re = 1000, 5000 and 10000 and note that the viscous
eigenvalues approach the Euler eigenvalues in the

limit from above — that is, the eigenvalues decrease
In the limit as
the Reynolds number goes to infinity, the eigenvalues
of the viscous case converge to the eigenvalues of the
Euier case.

as the Reynolds number increases.

The effect of changing the time-step, (At is
varied between 0.15 and 0.30), is observed. At At
= 0.3, the residual starts oscillating after time-step
200 and a converged solution is not obtained. This is
consistent with the fact that the largest eigenvalue is
greater than one in magnitude (see table Ia). For the
cases where the chosen At gives a convergent
solution, we see that as At is changed the magnitude
of the largest eigenvalue alse changes. The
relationship between the time step and the maximum
eigenvalue is such that there is a given time step that
will minimize the maximum eigenvalue. This is in
accordance with linear stability analysis of the
numerical method [6].

Ini order to study the effects of 2nd and 4th order
dissipation on the eigenvalues, we first run the code
300 time-steps until the residual is less than 41077
After 300 iterations, the dissipation terms are
altered. The eigenvalues obtained are thus the ones
associated with this altered system of equations.

In the inviscid case with both 2nd and 4th order
dissipation included, there are 15 eigenvalues with
modulus greater than 0.3, and the largest ones are
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well separated with 1.\1| ¥ 0.9693319. There are

also two eigenvalues with negative real parts (see
figure 1). When 2nd order dissipation is turned off
(EPS52 = 0) the effect on the largest eigenvalue is
minimal IAl'EPSZ:D = (.9693434. We note that,

in contrast to the case when both 2nd and 4th order
dissipations are included, there are no eigenvalues
with negative real pasts for this case (see figure 3).
The larger end of the spectrum remains well
separated with |A1|EP52=0 - “‘21EP82=0 v
0.144434.

Removing 4th order dissipation but keeping 2nd
order dissipation in the calculations, has a more
dramatic effect on the spectrum. We note that the
distribution of the eigenvalues iz quite different in

this case than in the previous cases {compare figures
1, 3 and 4). In this case the smallest eigenvalues
that are clustered together about zero tend to
become more distinct (see figure 4), and the
eigenvalues are more spread apart. The number of
eigenvalues larger than 0.5 in magnitude increases
from 11 to 39. The largest eigenvalues occur in &
complex conjugate pair and 12 | EPS4=0

l’\lePS 4= 2 0.1154. This indicates that in order

-

to accelerate the convergence for this case the effects
of at least two eigenvalues must be corrected for.
Moreover, as the number of eigenvalues of large
magnitude increases, one must annihilate the
contribution of more eigenvalues to accelerate the
rate of convergence.

When both 2nd and 4th order dissipation terms
are turned off completely after 300 iterations, our
calculations give two eigenvalues with magnitudes
greater than 1 indicating instability in the numerical
algorithm as expected (see figure 5). Moreover, the
eigenvalues are further gpread apart in a circle.

() Using the eigensysiem analysis to predict
unstable behavior

As a numerical experiment, we apply the
numerical algorithm described in the body of the
paper to calculate flow through a nozzle under the
same conditions as before with linear boundary
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conditions except (1) the entrance mach number is
now 2.0 (supersonic), and {2) the shock is at x = 0.3
which is upstream of the nozzle throat. This
problem is known to have an unstable solution {8].

To analyze the solution to this problem we first
obtain the exact starting values for demsity and
pressure at each grid point according to the following
equations. The density and pressure are obtained by:
Bp=piyy -0 = o(MYOMD}(Bafa),  (120)

pu a(x) = constant, (12b)
and (e + p)/p = constant . {12¢)
Here p is the density, p the pressure, M is the
Mach pumber, u the velocity and a the area. The
Rankine-Hugoniot shock jump relation for the
density is,

p (MF - 1)
Blghock = P2~ P1 = M2 (13)

1+t (1)

Based on this solution, we form the Jacobian
using Frechet derivatives and calculate the
eigenvalues of the system using both Arnoldi's
method and an IMSL eigenvalue routine on the full
Jacobian. The spectrum for this system indicates
that this system is unstable since it includes six
eigenvalues of magnitude greater than 1.0. When the
above values are used as initial conditions in our
code, the solution blows up in 20 iterations thus
verifying the instability of thig solution.

This exercise demonstrated that by obtaining the
eigenspectrum, we could predict unstable behavior.

(d} Convergence Acceleration Analysis

Based on the results of the eigenvalues analysis
of the previous sections, we know that the
eigenvalues of largest magnitudes are separated.
This indicates that the result of applying acceleration
techniques like Wynn's =-algorithm can produce a
dramatic reduction in the error. Moreover, since we
know the magnitude of the eigenvalues, we can
predict the rate of convergence when the effect of the
eigenvalues on the solution are corrected for. In this
study, we applied Wynn's e-algorithm using 3, 5, 7, 9
and 11 terms. Results are summarized in Table 1(b).
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Let AQ" = residual after n iterations of the
code. The following formulas are used for an
estimate of the largest eigenvalue

A2 (AQ/AQYMR, (14)
and the rate of convergence
R - log [(4Q"/aQ0)!/") . (15)

Using these formulas we obtain |A;] ¥ 0.9693 for

the Euler case with linear boundary conditions, and
A iscous & 09735 for the viscous case at

Re = 1000. These values agree with those obtained
from the method of Arnoldi to four decimal places.
After Wynn's e-algorithm is applied once with 5
terms, we find that the estimates of the largest
eigenvalues using equation (14) is 0.691 for the Euler
case (see table Ib, column 4). In this estimate, AQO
is taken to be the residual at the iteration before the
update, and AQ™ to be the residual n iterations after
the update.  This measures the effect of the
acceleration step on the residual. When AQO is
taken to be the first iteration after the update, the
estimate of the largest eigenvalue is 0.7813. These
values indicate that the error introduced into the
solution by the first five eigenvalues are initally
corrected for and thus reducing the amplification of
the error from Mll“ to !z\ﬁfn. The sixth largest

eigenvalues of the system is i)«ﬁt % 0.6928 for the

Euler case. As the number of iterations increase, the
effect of the acceleration step is diminished, The
slope of the residual returns to that of the
unaccelerated case after about 60 iterations (see
figure 6). When acceleration is applied again at this
point, we see that the slope of the residual is even
steeper. This is because the estimates of the
eigenvalues are more accurate than before since more
accurate iterates are used. These results are
surnmarized in table (Ib), and plotted in figure 6.
Here we plot the resulting residual after 3, 5, and 9
terms are used in Wynn's e-algorithm to update the
solution at iterations #200 and #300. The rate of
convergence, using equation (15} for the case when 5
terms are used in Wynn's g-algorithm, is 0.0135
before and 0.160 immediately after acceleration. The
rate of convergence based on the 6th eigenvalue is
0.159. Figure 7 plots the resulting residual when 3
and 5 terms are used in Wynn's e-algorithm to
accelerate the convergence for the case Re = 1000.
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Yil. Summary

A method of extracting a subset of eigenvalues
based on the method of Arnoldi is tested and the
eigenvalues obtained are satisfactorily accurate as
compared to the case when the full Jacobian was
used. This is then applied to the iterative scherme of
section II to study its convergence and stability
properties by solving the nozzle problem with shocks
in 1-D. The eigenvalues obtained indicate how the
rate of convergence depends on numerical parameters
like grid-size, timestep, oumber of iterations,
boundary conditions and artificial dissipation.
Knowing the magnitudes of the largest eigenvalues
gives information on the stability and rate of
convergence of the numerical scheme. Moreover,
they give information on whether the numerical
method is amenable to acceleration techniques like
eigenvalue annihilation and Wynn's e-algorithm.
For our case, the above mentioned acceleration
techniques are successful when applied since the
eigenvalues of largest magnitudes are well separated.
The prediction of the rate of convergence based on
the eigenvalue analysis agrees with the values
obtained numerically with and without acceleration.
This analysis technique is being extended to study
inviscid and viscous flows in both 2 and 3-dimensions
where the viscous effects have a much greater
influence on the solution.
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TABLE | {a) Effects of different time steps and boundary conditions

lerations ""Euler -- dt=0.20°" “Viscous - d1=0.20 ** ** VARIABLE TIME STEP b
Linaar Dirichlat Re # 1000 Re # 1000 [ INVISCID FLOW, DIRICHLET BOUNDARY CONDITIONS )
Char, BCs BCs Linaar BCs Dlrichlet  di=0,15 d1=0.175 610,25 dt=0.275  d1=0.3

1 498 x10°3 438 %103 438 x10°? 438 x10°3 4.38x10'3 4.38x10°F 4.38x10°3 4.38x10'3 4.38x10°9
wy & o
2 100 181 a0t 33 woS 6.3 x10°5 2,78 x10°% 1.28x10°% 8.45x10°%F 1.24x10°5 2.98x10°5 2.42x10°4
£
221
g 200 8.56 x10°6 654 x10°8 478 x10°6 447 x10°7 1A7x10°8 2.78x10°7 1.05x10°% 3.24x10°% 7.18x10°4
=
=
e 300 380 x107 1.28x10°'% 323 x107 545 x109 1.05x10°% 1.15x10°? 1.39x1017 3.51x10°7  1.80x10°3
S
5 400 169 x10°8 234 x10:13 213 x10°8 710 x1011 9.43x10""" 4.80x10°12 1.44xto 1 3.81x10°8 4.04x10°3
P

500 7.49 x10-10 212 x10%5 1.4 1010°% 025 x10'13 Baaxt0’? zo2x10'? zoxie15  413x10°9 4.03x10°3

Max 0.9693 0.9395 0.9732 0.9575 .0539 .0487 .9255 -0.97802  -1.01978

Elgerwalue
= (does not convarge)
i
i
it

TABLE | (b) Results of applying Wynn's e - Algorithm
= INVISCID WYNN'S ¢-ALGORITHM  *** Viscous -- Re = 1000

£ Linear Boundary Conditlans -+ 4t = 0.20 {Inviscid) Linear B.C, -- At = 0.20
2 Iterations no acceleration 3-terms 5-terms 5-terms 9-terms 11-1erms Largest S-terms J-terms
ET_.'( Ei‘ 'm‘

1 4.38x10-3 4380103 4.38x10°7  4.38x10°3  4.38x10'3  4:3xto-d inabevalw 4,38X10-3  4.38X10-3

200 8.56%10°8 8.56x10°8%  g.s56x10°®  @.56x10°®  a.sexio®  p.sexipc6  0.9893 4.78X10°®  478x10°€
E acc. applied acc applied acc, appliad ace. applled acc. applied 0.8393 acc, applied  acc. appiied
& iter=200 itar=222 ilar=200 lar=200 [tera252 £.8252 Hor=200 iter=200
Z 300 aox10’  278x10"' ssxi013 190 xio12 45201013 gasxwt 07276 sax1072 2.86x107"C
i acc. applied  -eeeeeee- ace, applled  acc applied  -oeeecnes 0.7276 acc. applied  ace. applied
% 310 2.79¢10°7 1.48x10-11  4.02x10°13 781310714 machinezers  8.77X10'% 0.8928 as1x10'5  a0axi0
o 400 1.69%10°8 mactine zara  2.87X104  machinezere  -o--oaeee- machine 20 0.6928 machine zere  machioe zerd
E 0.8208
= Kiteralions 800 340 355 3o aot 299 0.6204 @ 302 @ 302
; o reach 1014 0,5037

*A200,235 0.9893 0.8388 ¥0.8915 0.7358 0.6511 #20.5872 0.5937 0.7118 0.7867
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Figure 1

INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES

LINEAR EXTRAP. CHAR. BCs, dt=0.2, 300 ITERATIORS
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Figure 2

VISCOUS NOZZLE, 100 GRID FOINTS, 300 EIGENVALUES

RE=1000. LINEAR CHAR. BCs, di=0.2, 500 ITERATIONS
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Figure 5

imaginary axis

RESIDUAL

INVISCID NOZZLE, 100 GRID PCINTS, 300 EIGENVALUES
LINEAR BCs, dt=0.2, WITHQUT DISSIPATION,500 ITERATIONS
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Figure 7

ACCELERATION WITH 3,5 -TUERM WYNN"S ALGORITHM
LINEAR IICs, YISCOUS NOZZLE, RE=1000
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Figure 6

ACCELERATION WITH 3,5,9-TERM WYNN'S ALGORITHM
LINEAR BCs, INVISCID NOZZLE
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