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Abstract 

Convergence of iterative methods for the solution 

of the steady quasi--one-dimensional nozzle problem 

wi~h shocks is considered. The finite-difference

algorithms obtained from implicit schemes are used 

to approximate both the Euler and N a vier-Stokes 

Equations. These algorithms are investigated for 

stability and convergence characteristics. The 

numerical methods a.re broken down into their 

matrix-vector components a.nd then analyzed by 

examining a. subset of the eigensystem using a. 
method based on the Arnoldi process. The 

eigenvalues obtained by this method a.re accurate to 

within 5 digits for the largest ones and to within 2 

digits for the ones smaller in magnitude compared to 

the eigenvalues obtained using the full Jacobian. In 

this analysis we examine the functional relationship 

between the numerical parameters and the rate of 

convergence of the iterative scheme. 

Acceleration techniques for iterative methods 

like Wynn's e-algorithm a.re also applied to these 

systems of difference equations in order to acrelerate 

their convergence. This acceleration translates into 

savings in the total number of iterations and thus the 

total a.m.ount of computer time required to obtain a 

converged solution. The rate of convergence of the 

a.ccelerated system is found to agree with the 

prediction based on the ejgenvalues of the original 

iteration matrix. The ultimate goal of this study is 

to extend this eigenvalue analysis to multi ­

dimensional problems and to quantitatively estimate 

the effects of different parameters on the rate of 
convergence. 
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1. Introduction 

Over the past decade a multitude of algorithms 

and computer codes has evolved· in the attempt to 

model aerodynamic flows. A major expense in these 

efforts is the large amount of computer time required 

for the solution of any realistic problems. In 
particular, large numbers of it erations are required to 

achieve convergence of the solutions. The effort t o 

minimize these costs has spawned the development of 

ma.ny numerical methods and acceleration techniques 

whose time iterations are designed to converge 

rapidly to the steady state solution of the governing 

equations. The success of these methods hall been 

sporatic and to date there bas been little 

mathematical analysis on what factors determine 

whether a given numerical method or acceleration 

technique will result in more rapid convergence 

particularly when applied to a system of non-linear 

partial differential equations. 

In the present study we utilize acceleration 

techniques such as W ynn's e:-a.lgorithm and analysis 

techniques such as eigensystem analysis to 

numerically study the convergence properties of an 

iterative scheme applied to the quasi-one­

dimensional Euler and Navier-Stokes equat ions for 

flow through nozzles with shocks. Using a time­

dependent eigensystem analysis we study the 

convergence and stability properties by analyzing the

dependence of convergence of the code on the

discretization technique, boundary conditions, time­

step, number of grid points, and the physics of the

problem. 

 

 

 



An outline of the equations and th~ iterative 
scheme is presented followed by a description of the 

method of Arnoldi and Wynn's E-algorithm. 

II. Eouatjons and Iterative Scheme 

The system of equations we are. considering is: 

8Q 1 o(aF) 1 lfF 
-+---=S+--11 (1)
ot a {)x Re ax 

where 

Q= [: u] ,F- [ ~ ~2 + p 
e u(e + p) 

l 

4p ux variable cross-sectional 
Tx = ~ • a= area of the nozzle, where 

a(x) ~ 1-4 * {1- athroat)* x "' {1-x), a.nd 

Here Pr is the Pra.ndtl number, Re the Reynolds 

number, p the pressure, c the speed of sound, F 

the flux vector, p the density, u the velocity and e 

the energy. 

These equations are discretized in the following 

way: 

(2) 

lJFN+l 

= 
N<l 1 V

S +Re~ 

where h =at, and t ==time. 

~=~~= A~,A = Fluxhcobian. 

Substituting these equations into equation (1) we 

obtain: 

A combination of second and fourth order 
dissipation terms of the following form is added: 

(5} 

2where q = IuI + c, c = ( w) / p, 

d t and 2 = e2t, =lAx VxPI/IpJ, 
d = E -min (e , d ).4 4 4 2 

The parameter , which is denoted EPS2 the 2

rest of this paper, is chosen to be 1.0 and e = 
4 

EPS4 = 0.01. The dissipation operator is nonlinear 

and enhances the shock capturing accuracy of the 

algorithm. The terms are added both explicitly and 

implicitly to equation ( 4). The difference operators 

are applied at all interior points. More details can be 
found in 15,6]. 

e by in 

The iteration process condenses to 
M D.QN =R (6) 

where M is the matrix containing boundary 

conditions, implicit smoothing and fluxes, and R is 

the right-hand side which incorporates the source 

vector S, the viscous fluxes and any explicit 

dissipation terms. Since both M-l and R are 

functions of QN, we can thus write the iteration 

1 

The nonlinear terms linearized about QN are: 

(3a) 

(3b) 
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process as: 
QNtl = F{QN) (7) 

where F(QN) =QN + M-1R. 


For a more thorough discussion please see [4,5]. 


III. Arnoldi's Method avolied to the Nozzle Code 

To obtain a subset of the eigenvalues of the 

above operator F(QN), whose exact form at time t 

is unknown, we use a method based on tbe Arnoldi 

process 11]. Rather than form the matrix of the 

system analytically by hand, we use the computer to 

linearize our system by numerically approximating 

the Frechet derivatives where 

dF _ F(Q+Ev)-F(Q~v) + 0(..2) (8)QQ" • v- 2e "' 

where v is an arbitrary vector and E = 0.001 * 
(IIQII2/IIv112). The method is capable of extracting a 

subset of the total spectrum and only requires the 

Frechet derivatives for arbitrary vectors v to 

accomplish this. The crux of the algorithm can be 

condensed into the following. Starting with an 

arbitrary starting vector , we construct mv1 

orthonormal vectors spanning a Krylov subspace [2]: 

Let 

fork= 1,m: 

k 

vk+l =A ek- I hjk ej; bjk = ejT A ek 
i=1 

T )-1/2
bk+l,k = (vk+l 'vk+1 

-1
~+1 = (hk+I,k) vk+l 

next k. 

The m eigenvalues of the matrix H = [hjkl are 

approximations to the eigenvalues of [A], where 

[A)= [dF/dQ) is the Jacobian matrix in our case. 

These eigenvalues are a. good approximation to the 

desired subset of eigenvalues we seek. For a more 

thorough discussion on the method please see [7,1]. 

IV. Wynn's ~-Algorithm applied to the Nozzle code 

To accelerate the convergence of our iterative 

scheme we applied Wynn's e-aJgorithm [9] whicb. we 
now summarize. 

where Qn is the solution vector at time t = n Ll..t, 

n n+l ( n+l n 2then Ek+l = ~k-l + Ek -ek)//l , n,k ~ o (9) 

where u2- (~n+l-t:n) {e:n+l n),- - k k k -€k 

The value e:2m is the same as the mth order 

Shanks transformation [3). If a table is constructed 
· · f n n ncons1stmg o co1umns E_1 ,E0 ,e:1 , ... , the odd 

columns can be eliminated leaving only the even 

columns. The entries in these columns E~m are 

obtained by the following formula [3]: 

(10) 

where w1 = (o2 !a 2 ), w2 = ( o2 1p2 ), 

2 2 


w3 = (c h ) , w4 = 1-w 1-w2 + 0 w
3, 

2 2 fJ2 2 
a = II N - c 11 , = II s - c 11 ' 

2 2 2o =II E- c 11 , ..,2 = II w - c 11 , 
and where the new value E is a combination of the 

value to the North (N), the value to the south (S), 

the value to the west (W) and the value in the center 

(C). Except for the first column, where 8 = 0, the 

value for 8= 1. Please refer to {3,9] for details. 

y. Descrintion of the Problem 

We apply the numerical method presented in 

Section II to calculate flow through a nozzle with 

shocks in one-<limension under the following flow 

conditions. The nozzle is of length 1, the area at 

either end is 1, the area at the throat is 0.8 and the 

location of the shock is at 0.7. At the entrance of the 

nozzle, the Mach number is 0.553, the density is 1 

and the pressure is 1.0. Although the viscous effects 

are not important in this l-D nozzle problem, they 

are studied because of their importance in 

multidimensional problems. 
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VI. Numerical Results 

(a) Application of Arnoldi's Method 

When applying the algorithm based on the 

Arnoldi Method outlined in section III to the nozzle 

code we note that the eigenvalues obtained from this 

method (compared to the eigenvalues obtained with 

the full jacobian) are accurate to within 10-5 for the 

largest ones in magnitude, a.nd accurate to within 
210- for the smaller ones in two iterations. For error 

estimates please see [7]. 

(b) Eigensystem a.n&lysis of the 1-D Nozzle code 

In this section we analyze how changes in the 
numerical parameters of the iterative scheme affect 

the rate of convergence of the calculations. More 

precisely, we will discuss how changes in various 

parameters affect the eigenvalues (and thus the rate 

of convergence) of the nozzle operator (7) for the 

problem described in section V. The parameters we 

examine are (a) the number of iterations, 

(b) grid size, (c) Dirichlet and linear extrapolated 

boundary conditions, (d) size of the tiJDei!tep and 

(e) addition of 2nd and 4th order dissipation terms. 

For the viscous ca.se, we also study the effects on the 

eigenvalues due to changes in the Reynolds number. 

Results are discussed below and summarized in 

Table Ia. 

Presently, the discussion will be restricted to the 

case of discretization of the Euler equations with 

linear boundary conditions, and with the number of 

grid points jma.x = 100. The magnitude of the 

largest eigenvalue l..\11 for the inviscid equations at 

iterations n = 50, 75, 100 and 200, is ]..\11 = 
0.97519, 0.97175, 0.97042, 0.96936 respectively. The 

magnitude or the largest eigenvalue decreases as n 

increases and a-pproaches the eigenvalue of the steady 

configuration. This indicates that the rate of 

convergence may start out slowly but improves to 

the asymptotic rate of convergence as the number of 

iterations n increases. This is indicated in figure 6 

where the slope of the residual approaches a constant 

after about 125 iterations of the code. This behavior 

is observed for the viscous case as well where 

l..\11viscous = 0.9792, 0.9761, 0.9746, and 0.9732 

respectively at Re = 1000. The eigenvalues for both 

of these cases are plotted in figures 1 & 2. Note that 

in figure 1 there are two eigenvalues with negative 

real parts denoted by the symbol e but plotted on 

the positive real axis. 

The number of spatial grid points (jma.x) is a 

measure of the size of the Jacobian dF/dQ. For 

jmax = 10, 30, 50, 70, 90 and 100, and linear 

boundary conditions, 1>.1 1 = 0.8850, 0.9689, 

0.9694, 0.9693, 0.9693, and 0.9693 respectively. 

Initially l..\11 increases as the number of grid points 

increases until jma.x = 50. As jma.x increases, both 

the total number of eigenvalues and the number of 
eigenvalues of large magnitude increase. For 

jmax =30 there are 12 eigenvalues greater than 0.5. 

This number increases to 15 for jma.x = 100. This 

indicates that for this case, the rate of con~ergence 

and acceleration methods such as eigenvalue 

a.nnihiliation will depend on the grid size as well as 
other numerical parameters. 

Boundary conditions affect convergence by 
changing the magnitude of the largest eigenvalue. In 

this study the results of applying linear extrapolated 

boundary conditions and Dirichlet boundary 

conditions are compared. The linear extrapolated 
characteristic boundary conditions at the entrance 

are obtained by forming a linear combination of the 

solution in the previous step. The quantities at the 

left boundary are: 

pl = 2 p2- p3 (lla) 

u1 =(1/2) p1(Rl- R2) (llb) 

e1 = p1/(~1) + (1/2) p1u1 
2 (llc) 

where Rl and R2 are the 1-D Riemann invariants of 

the flow and the subscripts indicate the value of the 

variable a.t that grid point. The Dirichlet boundary 

conditions are taken to be the values obtained from 

the exact solution. The maximum eigenvalue for the 

case of linear extrapolated characteristic boundary 

conditions is 0.96933 whereas it is 0.93951 for the 

Dirichlet boundary conditions. This translates to 

roughly one half the number of iterations required to 

achieve maximum error in the residual of l.Ox1o-l0 

using Dirichlet boundary conditions as compared to 
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linear boundary conditions (see table Ia). We note 

that a difference in the eigenvalues in the third digit 

translates to roughly 20 iterations of the code with 

linear extrapolated boundary conditions and 10 

iterations of the code with Dirichlet boundary 

conditions. 

For both the Euler and the viscous results, the 

eigenvalues with large absolute values are well 

separated. This is expected since the local effects of 

viscosity on the shock structure are minor. As a 

result, the nozzle code is well suited for convergence 

acceleration schemes. 

For the viscous case, we calculate flow at 

Re = 1000, 5000 and 10000 and note that the viscous 
eigenvalues approach the Euler eigenvalues in the 

limit from above - that is, the eigenvalues decrease 

as the Reynolds number increases. In the limit as 

the Reynolds number goes to infinity, the eigenvalues 

of the viscous case converge to the eigenvalues of the 

Euler ca.se. 

The effect of changing the time-step, (.C..t is 
varied between 0.15 and 0.30), is observed. At .C..t 

= 0.3, the residual starts oscillating after tirnEH~tep 
200 and a converged solution is not obtained. This is 

consistent with the fact that the largest eigenvalue is 

greater than one in magnitude (see table Ia.). For the 

cases where the chosen fl.t gives a convergent 

solution, we see that as fl.t is changed the magnitude 

of the largest eigenvalue also changes. The 

relationship between the time step and the maximum 

eigenvalue is such that there is a given time step that 

will minimize the maximum eigenvalue. This is in 

accordance with linear stability analysis of the 

numerical method [6]. 

Itt order to study the effects of 2nd and 4th order 

dissipation on the eigenvalues, we first nm the code 
7300 time-steps until the residual is less than 4xl0­

After 300 iterations, the dissipation terms are 

altered. The eigenvalues obtained are thus the ones 

associated with this altered system of equations. 

well separated with I\I ~ 0.9693319. There are 

also two eigenvalues with negative real parts (see 
figure 1). When 2nd order dissipation is turned off 

{EPS2 = 0) the effect on the largest eigenvalue is 

minimal l..\11EPS2=0 = 0.9693434. We note that, 

in contrast to the case when both 2nd and 4th order 

dissipations are included, there are no eigenvalues 

with negative real parts for this case (see figure 3). 

The larger end of the spectrum remains well 

separated with IA1]EPS2=0 - I~21 EPS2=0 ~ 

0.144434. 

Removing 4th order dissipation but keeping 2nd 

order dissipation in the calculations, has a more 

dramatic effect on the spectrum. We note that the 

distribution of the eigenvalues is quite different in 

this case than in the previous cases (compare figures 

1, 3 and 4). In this case the smallest eigenvalues 

tha.t a.re clustered together about zero tend to 

become more distinct (see figure 4), a.nd the 

eigenvalues are more spread apart. The number of 

eigenvalues larger than 0.5 in magnitude increases 

from 11 to 39. The largest eigenvalues occur in a 

complex conjugate pair and l.A1 1EPS4=0 • 

1>.3 1 EPS4 = 0 Q! 0.1154. This indicates that in order 

to accelerate the convergence for this case the effects 

of at least two eigenvalues must be corrected for. 

Moreover, as the number of eigenvalues of large 

magnitude increases, one must annihilate the 

contribution of more eigenvalues to accelerate the 

rate of convergence. 

When both 2nd and 4th order dissipation terms 

are turned off completely after 300 iterations, our 

calculations give two eigenvalues with magnitudes 

greater than 1 indicating instability in the numerical 

algorithm as expected (see figure 5). Moreover, the 

eigenvalues are further spread apart in a. circle. 

(c) Using the eigensystem analysis to predict 

unstable behavior 

As a. numerical experiment, we apply the 
In the inviscid case with both 2nd and 4th order 

numerical algorithm described in the body of the 
dissipation included, there are 15 eigenvalues with 

paper to calculate flow through a nozzle under the 
modulus greater than 0.5, and the largest ones are 

same conditions as before with linear boundary 
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conditions except ( 1) the entrance mach number is 

now 2.0 (supersonic), and (2) the shock is at x = 0.3 

which is upstream of the nozzle throat. This 

problem is known to have an unstable solution [8]. 

To analyze the solution to this problem we first 

obtain the exact starting values for density and 

pressure at ea.ch grid point according to the following 

equa.tioDl!. The density and pressure are obtained by: 
2t..p == Pi+l- Pi= p{M /(1-M2)}{t..afa}, {l2a) 

pu a(x) =constant, (12b) 

and (e + p)/p =constant. (12c) 

Here p is the density, p the pressure, M is the 

Mach number, u the velocity and a the area. The 

Rankine-Hugoniot shock jump relation for the 

density is, 

Based on this solution, we form the Jacobian 

using Frechet derivatives and calculate the 

eigenvalues of the system using both Arnoldi's 

method and an IMSL eigenvalue routine on the full 

Jacobian. The spectrum for this system indicates 

that this system is unstable since it includes six 

eigenvalues of magnitude greater than 1.0. When the 

above values are used as initial conditions in our 

code, the solution blows up in 20 iterations thus 

verifying the instability of this solution. 

This exercise demonstrated that by obtaining the 

eigenspectrum, we could predict unstable behavior. 

(d) Conver~enoe Acceleration Analysis 

Based on the results of the eigenvalues analysis 

of the previous sections, we know that the 

eigenvalues of largest magnitudes are separated. 

This indicates that the result of applying acceleration 

techniques like Wynn's e:-algorithm can produce a 

dramatic reduction in the error. Moreover, since we 

know the magnitude of the eigenvalues, we can 

predict the rate of convergence when the effect of the 

eigenvalues on the solution are corrected for. In this 

study, we applied Wynn's t:-algoritbm using 3, 5, 7, 9 

and 11 terms. Results are summarized in Table I(b). 

Let fi.Q
0 = residual after n iterations of the 

code. The following formulas are used for an 

estimate of the largest eigenvalue 
· ). ~ (fi.Qn/fi.QO)l/n, (l 4)

1 

and the rate of convergence 

R ~-log [(fi.Qn / fi.Q0)1/ 0 J . (15) 

Using these formulas we obtain lA1l ~ 0.9693 for 

the Euler case with linear boundary conditions, and 

l>•1lviscous ~ 0.9735 for the viscous case at 

Re = 1000. These values agree with those obtained 

from the method of Arnoldi to four decimal places. 

After Wynn's e:-algorithm is applied once with 5 

terms, we find that the estimates of the largest 

eigenvalues using equation (14) is 0.691 for the Euler 

case (see table Jb, column 4). In this estimate, 6..Q0 

is taken to be the residual at the iteration before the 

update, and t..Qn to be the residual n iterations after 

the update. This measures the effect of the 

acceleration step on the residual. When b..Q0 is 

taken to be the first iteration after the update, the 

estimate of the largest eigenvalue is 0.7813. These 

values indicate that the error introduced into the 

solution by the first five eigenvalues are initally 

corrected for and thus reducing the amplification of 

the error from I>.11n to I ..\61n. The sixth largest 

eigenvalues of the system is IA6 1 ~ 0.6928 for the 

Euler case. As the number of iterations increase, the 

effect of the acceleration step is diminished. The 

slope of the residual returns to that of the 

unaccelerated case after about 60 iterations (see 

figure 6). When acceleration is applied again at thi~ 

point, we see that the slope of the residual is even 

steeper. This is because the estimates of the 

eigenvalues are more accurate than before since more 

accurate iterates are used. These results are 

summarized in table (Ib), and plotted in figure 6. 

Here we plot the resulting residual after 3, 5, a.nd 9 

terms are used in Wynn's e:-algorithm to update the 

solution at iterations # 200 and #300. The rate of 

convergence, using equation (15) for the case when 5 

terms are used in Wynn's e-algorithm, is 0.0135 

before and 0.160 immediately after acceleration. The 

rate of convergence based on the 6th eigenvalue is 

0.159. Figure 7 plots the resulting residual when 3 

and 5 terms are used in Wynn's e-algorithm to 

accelerate the convergence for the case Re =1000. 
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V'II. Sumroarv 

A method of extracting a subset of eigenvalues 

based on the method of Arnoldi is tested and the 

eigenvalues obtained are satisfactorily accurate as 

compared to the case when the full Jacobian was 

used. This is then applied to the iterative scheme of 

section II to study its convergence and stability 

properties by solving the nozzle problem with shocks 

in 1-D. The eigenvalues obtained indicate how the 

rate of convergence depends on numerical parameters 

like grid-size, time-step, number of iterations, 

boundary conditions and artificial dissipation. 

Knowing the magnitudes of the largest eigenvalues 

gives information on the stability and rate of 

convergence of the numerical scheme. Mora>ver, 

they give information on whether the numerical 

method is amenable to acceleration techniques like 

eigenvalue annihilation and Wynn's e-a.lgorithm. 

For our case, the above mentioned acceleration 

techniques a.re successful when applied since the 

eigenvalues of largest magnitudes are well separated. 

The prediction of the rate of convergence based on 

the eigenvalue analysis agrees with the values 

obtained numerically with a.nd without acceleration. 

This analysis technique is being extended to study 

inviscid and viscous flows in both 2 and 3-dimensions 

where the viscous effects have a much greater 

influence on the solution. 
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TABLE I (a} Effects of different time steps and boundary conditions 

lleralions "Euler -­
Linear 
Char. BCs 

dt•0.20'' 
Diricl11et 
BCs 

··viscous 
Rt f 1000 
linear BCs 

.. dt.o.20 .. 
Re II 1000 
0 lrlchlet 

VARIABLE TIME STEP 
f INVISCID FLOW, DIRICHLET BOUNDARY CONDITIONS I 

dl•C.\5 dt•0.\75 d\•0.25 d\•0.275 dt•0.3 

4.38 xt o-3 4.38 xto-3 4.38 xto-3 4.38 xto· 3 4.38x1 o - 3 4.38xt o-3 4.38x1 o-3 4 .38x 1 o· 3 4 .38x1 o-3 

1.81 ~to·• 3.3 ~~a-s 4 4100 6.34 xto·5 2.78 x1o·S 1.2ex1 o· 8 .45x1 o·S 1.24x1 o-5 2 .1l8x1o-5 2.42xto· 

200 8 .56 xto· 6 6.54 xto· 8 4.78 x t o· 6 4.17 x10' 1 t .t7x1a· 6 2 .76xto·7 1 .osxto· 8 3 .24x1 o· B 7 . 19xto· 4 

300 3 .80 xto· 7 1.28 xw 10 3.23 x1o· l 5.45 xto·ll t .05xto · 8 1.15x1 o · ll 1.39x1o·1 t 3 .51xto· 7 t .eox t o·3 

400 1.81l xto·8 2.34 x1o·13 2 . 13 x1o· 8 7. 10 x1o ·ll ll.43x1o'11 4 .80x1o·12 1.44x1o-U 3 .81)(10' 8 4 . 04x1 o·3 

500 7.49 x1o· 10 2.12 x1o·IS 1.4 1X10' 9 11.25 XI o· 13 8 .44x to'13 2 .02x1o·H 2 .0x1o·IS 4 . 13x1o· ll 4 . 03x1 o·3 

Mu 0 .11693 0.9395 0.9732 0 .9575 .9539 .9467 .9255 -0 .97802 · 1 .011H8 
Eigtnvalue 

(dott not W~YMge) 

TABLE I (b) Results of applying Wynn's t . Algorithm 

"" iNVISCiO WYNN'S t ·ALGOAITHM Vlaooua --A.- 1000 

Linear Boundary Cond ition• .. AI • 0.20 ltnviscid) Linear B.C. -- At • 0.20 

litration • no acceleration 3-terma 5-terma 5-terrns 9-lerma 11-1erm1 \.algtJI 5 ·terma 3-terrna 

EigwJvaLooo 

4 .38xto· 3 4.38x1 o-3 4.38x1o· 3 4.3a.to·3 4.38x10' 3 4:3bto·3 irubo.voluo 4.38X10·3 4.38X111·3 

200 8 .!>8)(10' 6 a. s&x1o· ~ a .ssx1o· 8 8.5h10'6 8.56x1 o· 6 B.5Bx1o· 6 0.98;3 4.78Xto-e 4 .78X1o·8 

ace. applied ace applied ace. appllod ace. appllecl acc.~ 1!.8393 ace. appied ...:. ljlplled 

iter-200 ll•r-222 lt••·200 lter-200 ller•2S2 0.8252 iltr-200 lter•200 

300 3 .80x1 o 
-7 2.78X1o' 11 5.51 xwt3 1.119 xw12 4.52x1o·13 9.49Xto· 14 0.7278 5.14XI0·12 2.88Xto'10 

ace. aPPlied 
- · appUt<l 

~ aps>l~ 0.7276 .ec. •ppll•d ec>G- epj)liecl 

310 2. 7h10'7 t.48xto· ll 4.02X10'13 7.81 xwt4 machine zero 8.77XID't4 0.8Q28 4.$1X10' 15 3 .03XI o'14 

400 1 .69Xto·8 macllint ztro 2.e7Xro' 14 INChint , ... mocllino zero O. U28 ma<hino '"'' ~~*hilt UfO 

0.8205 

l i1ttatic.ns 800 340 355 310 301 299 0.8204 ill' 302 0302 
10 rtlcl!IO' H 0.5937 

. ,.200 ,23~ 0 .9693 o.ease •0.891!> 0 .7358 0.6911 00.5873 0.5937 0.7118 0.71187 

'.4201,236 0.9693 0.8464 "m.m 0. 7981 0.7835 A25ol.285 0 .5365 0.7043 0.8403 

• 0.7813 • G,t(147 0 .5365 

' An.m • \ (AOmll ji>Onl\ 11(m-n) 

.,.222 ,25$ 

U A252 ,285 

@ It look 900 ltetaaona lor 1M residual to drop to 1 o-14 lor this uH 

627 




Figure 

INVISCID NOZZLE, 100 GRID POINTS, 300 EIGENVALUES 
UNf!AR EXTRAP. CH AR. B~. dl~0.2, 300 ITERATIONS 
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Figure 2

VISCOU~ NOZZLE, 100 GfUl> POINTS, 300 EIGENVALUES 
RE-1000. LINF.AR CHAR. BCs. dls0.2, 500 ITERATIONS 
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Figure 3 

INVISCID NOZZLE. 100 GRID POINTS, :wu EIGENVALUES 
LINEAR Bt:s.dl-='0.2, WITHOUT SECOND ORDER DI SSI PATION 
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Figure 4 

INVISCID NOZZLE, 100 CHill POI NTS, 300 EIGENVALUES 
LINEAR BCs. dt~0.2, WITHOUT EPS4 Sloi00THJNC,500 ITERATIONS 
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Figure 5 

INVISCID NOZZLE, 100 GRID POINTS, :lOU EIGENVALUES 
LINEAR BCa, dl=O.Z,WJTHOUT DISS!PATION.~OO ITERATIONS 
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Figum 7 

ACCEIJ~IUl.TJON WITH 3,5 -TEIIM WYNN'S AI.C.;OI!ITIIM 
LIN~AII IlC>, VISCOUS NOZZLE, nt-:~1000 
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Figure 6

ACCELERATION WITH 3,5,9-TERM WYNN'S ALGORITHM 
i.INEAR BCs, INVISCIO NOZZLE 
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