Skip to main content
Article
DRGen: Domain Generalization in Diabetic Retinopathy Classification
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
  • Mohammad Zeyad Atwany, Mohamed bin Zayed University of Artificial Intelligence
  • Mohammad Yaqub, Mohamed bin Zayed University of Artificial Intelligence
Document Type
Conference Proceeding
Abstract

Domain Generalization is a challenging problem in deep learning especially in medical image analysis because of the huge diversity between different datasets. Existing papers in the literature tend to optimize performance on single target domains, without regards to model generalizability on other domains or distributions. High discrepancy in the number of images and major domain shifts, can therefore cause single-source trained models to under-perform during testing. In this paper, we address the problem of domain generalization in Diabetic Retinopathy (DR) classification. The baseline for comparison is set as joint training on different datasets, followed by testing on each dataset individually. We therefore introduce a method that encourages seeking a flatter minima during training while imposing a regularization. This reduces gradient variance from different domains and therefore yields satisfactory results on out-of-domain DR classification. We show that adopting DR-appropriate augmentations enhances model performance and in-domain generalizability. By performing our evaluation on 4 open-source DR datasets, we show that the proposed domain generalization method outperforms separate and joint training strategies as well as well-established methods. Source Code is available at https://github.com/BioMedIA-MBZUAI/DRGen.

DOI
10.1007/978-3-031-16434-7_61
Publication Date
9-16-2022
Keywords
  • Deep learning,
  • Diabetic retinopathy,
  • Domain generalization,
  • Regularization
Comments

IR Deposit conditions: non-described

Citation Information
M. Atwany, and M.Yaqub, "DRGen: Domain Generalization in Diabetic Retinopathy Classification", in Medical Image Computing and Computer Assisted Intervention (MICCAI 2022), Lecture Notes in Computer Science, vol 13432, pp.635-644, Sept 2022, doi:10.1007/978-3-031-16434-7_61