Skip to main content
Article
Structural health monitoring and damage detection using an intelligent parameter varying (IPV) technique
International Journal of Non-Linear Mechanics
  • Soheil Saadat, North Carolina State University at Raleigh
  • Mohammad N. Noori, North Carolina State University at Raleigh
  • Gregory D. Buckner, North Carolina State University at Raleigh
  • Tadatoshi Furukawa, Osaka University
  • Yoshiyuki Suzuki, Kyoto University
Publication Date
3-24-2004
Abstract
Most structural health monitoring and damage detection strategies utilize dynamic response information to identify the existence, location, and magnitude of damage. Traditional model-based techniques seek to identify parametric changes in a linear dynamic model, while non-model-based techniques focus on changes in the temporal and frequency characteristics of the system response. Because restoring forces in base-excited structures can exhibit highly non-linear characteristics, non-linear model-based approaches may be better suited for reliable health monitoring and damage detection. This paper presents the application of a novel intelligent parameter varying (IPV) modeling and system identification technique, developed by the authors, to detect damage in base-excited structures. This IPV technique overcomes specific limitations of traditional model-based and non-model-based approaches, as demonstrated through comparative simulations with wavelet analysis methods. These simulations confirm the effectiveness of the IPV technique, and show that performance is not compromised by the introduction of realistic structural non-linearities and ground excitation characteristics.
Citation Information
Soheil Saadat, Mohammad N. Noori, Gregory D. Buckner, Tadatoshi Furukawa, et al.. "Structural health monitoring and damage detection using an intelligent parameter varying (IPV) technique" International Journal of Non-Linear Mechanics Vol. 39 Iss. 10 (2004) p. 1678 - 1697
Available at: http://works.bepress.com/mnoori/2/