Worked in different universities/institutions in various capacities as follows:

From the SelectedWorks of Dr. Mohammad Mansoob Khan

May 17, 2014

Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO2@Polyaniline Nanocomposite Film

M. O. Ansari
Mohammad Mansoob Khan, Dr
S. A. Ansari
K Raju
J Lee, et al.

Available at: https://works.bepress.com/mmansoob_khan/43/
Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO₂@Polyaniline Nanocomposite Film

Mohd Omaish Ansari,† Mohammad Mansoob Khan,† Sajid Ali Ansari,† Kati Raju,‡ Jintae Lee,† and Moo Hwan Cho†,*

†School of Chemical Engineering and ‡School of Materials Science and Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 712-749, South Korea

Supporting Information

ABSTRACT: The development of organic−inorganic photoactive materials has resulted in significant advancements in heterogeneous visible light photocatalysis. This paper reports the synthesis of visible light-active Ag/TiO₂@Pani nanocomposite film via a simple biogenic−chemical route. Electrically conducting Ag/TiO₂@Pani nanocomposites were prepared by incorporating Ag/TiO₂ in N-methyl-2-pyrrolidone solution of polyaniline (Pani), followed by the preparation of Ag/TiO₂@Pani nanocomposite film using solution casting technique. The synthesized Ag/TiO₂@Pani nanocomposite was confirmed by UV−visible spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analysis. The Ag/TiO₂@Pani nanocomposite film showed superior activity towards the photodegradation of methylene blue under visible light compared to Pani film, even after repeated use. Studies on the thermoelectrical behavior by DC electrical conductivity retention under cyclic aging techniques showed that the Ag/TiO₂@Pani nanocomposite film possessed a high combination of electrical conductivity and thermal stability. Because of its better thermoelectric performance and photodegradation properties, such materials might be a suitable advancement in the field of smart materials in near future.

KEYWORDS: polyaniline, nanocomposites, Ag/TiO₂@Pani, photocatalysis, visible light active, cyclic stability

INTRODUCTION

Since the first report in Nature in 1972, research in the field of photocatalytic active semiconducting metal oxides has advanced considerably.¹ Among the different metal oxides, TiO₂ has been the most promising and well-studied over the years because of its photocatalytic properties owing to its wide band gap, high chemical stability, large surface area, non-toxicity, and wide commercial availability.²−⁴ On the other hand, the wide band gap (3.2 eV) of TiO₂ limits its utilization under visible light irradiation, which comprises a large part of the solar spectrum. To overcome this problem, band gap engineering has been carried out to improve the utilization of solar light using a range of techniques, such as metal ion doping,⁵−⁷ nonmetal doping,⁸−¹⁰ noble metal deposition,¹¹ narrow band gap semiconductors coupling,¹² dye sensitization,¹³ and polymer composites formation.¹⁴ Among the different techniques, metal doping has been the most commonly used approach for achieving visible light-driven photocatalysis of TiO₂ because of its simplicity, high efficiency and facile synthesis.

Noble metals exhibit enhanced photocatalytic activity as they can strongly absorb visible light because of their surface plasmon resonance and can also work as electron traps to activate the reaction sites.¹⁵ Therefore, it is expected that doping with noble metals, such as Ag or Au with TiO₂, to form Au or Ag/TiO₂ photocatalyst can be an efficient way of achieving visible light-driven photocatalysis of TiO₂. In view of the above possibilities, many workers have reported the production of nanocomposites of TiO₂ and ZnO with noble metals to enhance the photocatalytic properties of the semiconductor.¹⁶−¹⁸ On the other hand, the synthetic method

Received: January 23, 2014
Accepted: May 16, 2014
Published: May 16, 2014
employed, often suffer from the following limitations, that is, use of hazardous chemicals, capping agents, etc. To overcome these limitations, our group has used a greener route for the synthesis of Ag/TiO₂ nanocomposites using an electrochemically active biofilm (EAB).³,¹⁹,²⁰ and reported the highly efficient degradation of 4-nitrophenol, methylene blue (MB), and methyl orange under visible light activity.²¹ The EABs are well known in microbial fuel cells and bioinspired nanomaterial synthesis. In this study, EABs was used as a biogenic tool, where we have utilized living microorganisms for the synthesis of Ag/TiO₂ nanocomposite. As the amount of photocatalyst used is generally in milligrams, the recovery of catalyst is a tedious job, which in turn affects its reproducibility. Several studies have shown that a catalyst supported on a substrate not only solves the recovery problems but also affects the efficiency because of the synergism between the constituents. Robert et al.²² reported that TiO₂ supported on glass-fibers is stable, even after several uses. Similarly, Chang-Soo Lee et al.²³ developed TiO₂ thin films on a polymer substrate with high catalytic activity. Among the different polymer substrates, polyaniline (Pani) is exciting because of its low cost, high stability, and ease of synthesis.²₄ In addition, it enhances the photocatalytic property of metal oxides because of the synergism between the constituents.²₅

Therefore, Pani-modified, metal-doped TiO₂ might be an exciting area of research because the resulting Pani nanocomposite is expected to have unique properties, such as enhanced photo catalytic activity, high stability, etc., because of the synergism between the constituents. Accordingly, this paper reports Ag/TiO₂@Pani nanocomposite film by the in-situ oxidative polymerization of aniline in the presence of Ag-modified TiO₂. The prepared nanocomposite was used for the degradation of MB dye under visible light irradiation. The electrical conductivity and electrical stability of Pani and Ag/TiO₂@Pani nanocomposite film was also evaluated and the latter showed higher conductivity and better stability than Pani film.

EXPERIMENTAL SECTION

Chemicals and instrumentation

Aniline, silver nitrate (AgNO₃, 99%), methylene blue (MB), N-methyl-2-pyrrolidone (NMP) and TiO₂ (average particle size ~21 nm) were purchased from Sigma-Aldrich. Potassium persulfate (KPS), HCl, NH₄OH, and methanol were obtained from Duksan pure chemicals, Korea, and used as received. The water used in these experiments was de-ionized water obtained using a PURE ROUP 30 water purification system.

X-ray diffraction (XRD, PANalytical, XPert-PRO MPD) was performed using Cu Kα radiation (λ = 0.15405 nm). The surface morphology was examined by scanning electron microscopy (SEM, Hitachi-4800). The UV–visible diffuse absorbance and reflectance spectra (DRS) were measured using a UV–vis–NIR spectrophotometer (VARIAN, Cary 5000 U.S.A.). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) was performed by using a Perkin Elmer (Pyris Dimond) instrument heating from ~25 to ~800 °C at the rate of 10 °C min⁻¹ at a N₂ flow rate of 200 mL/min. X-ray energy photoelectron spectroscopy (XPS, ESCALAB 250) was performed using a monochromated Al Kα X-ray source (hν = 1846.6 eV) with a 500 μm spot size, at Korea Basic Science Institute (KBSI). The photoluminescence (PL) of the samples was recorded by using a Shimadzu, 1 k, Japan spectroscopy, at KBSI. The photocatalytic degradation and photoelectrochemical experiments, such as electrical chemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV), were conducted using a 400 W lamp (λ > 400 nm) with an irradiation intensity of 31.0 mW cm⁻² (3M, USA). The EIS and LSV measurements were carried out using a potentiostat (Versa STAT 3, Princeton Research, USA) with a standard three-electrode system in a 0.2 M Na₂SO₄ solution as the electrolyte. In this system, Ag/AgCl (saturated with KCl), a Pt gauge and Pani or Ag/TiO₂@Pani film were used as the reference, counter and working electrodes, respectively. All measurements of the DC electrical conductivity (σ) were performed using a 4-in-line probe electrical conductivity measuring instrument with a PID controlled oven (Scientific Equipment, Roorkee, India). The calculations were performed using the following equation:

$$\sigma = \ln \left(\frac{2S(W)}{I} \right) \times 10^{-9}$$

where I, V, W, and S are the current (A), voltage (V), thickness of the film (cm), and probe spacing (cm), respectively, and σ is the DC electrical conductivity (S/cm).²⁶

Preparation of Ag/TiO₂@Pani Nanocomposite Film

The preparation of Ag/TiO₂@Pani was carried out in two steps: the synthesis of Ag/TiO₂ followed by its incorporation into Pani to prepare Ag/TiO₂@Pani nanocomposite film. The synthesis of Ag/TiO₂ is reported elsewhere.²,²⁷ The nanocomposite system of Ag/TiO₂ and Pani was prepared by mixing the emeraldine base of Pani (Pani-EB) with Ag/TiO₂. The synthesis of Pani-EB is reported elsewhere.² In a typical process, Pani-EB was first dissolved in 50 mL of NMP with continuous stirring for 24 h for complete dissolution. The EAB-assisted Ag/TiO₂ (3 wt % of Pani-EB) was mixed slowly with Pani solution under continuous stirring and occasional shaking in an ultrasonic bath for few minutes for proper dispersion of Ag/TiO₂ inside the NMP solution of Pani. Later, the Ag/TiO₂@Pani nanocomposite film was prepared using solution casting technique. For the DC electrical conductivity, photoelectrochemical and photocatalytic studies, the Pani and Ag/TiO₂@Pani nanocomposite films were doped in 100 mL of a 1 M HCl solution followed by washing with double distilled water and drying at 60 °C for 24 h.

Studies and measurement

The electrical conductivity of the Ag/TiO₂@Pani nanocomposite film was measured by 4-in-line probe electrical conductivity measuring instrument. The stability of the nanocomposites was examined in terms of the retention of their DC electrical conductivity under cyclic aging conditions. In the cyclic aging experiments, the DC electrical conductivity was measured at temperatures ranging from 40 to 150 °C five times at 45 min intervals. The Ag/TiO₂@Pani nanocomposite film was also used for the degradation of MB under visible light irradiation. Details of the experimental setup are reported elsewhere.²¹

RESULTS AND DISCUSSION

A simple biogenic—chemical route was used for the synthesis of Ag-modified TiO₂ and later its composite with Pani. A unique protocol of EAB-assisted synthesis was used to prepare Ag/TiO₂.²,²₀,²⁷ The advantage of this synthetic method is that it does not involve the use of hazardous chemicals, capping agents, etc. Moreover, the entire reaction takes place in water. Pani was used as a supporting matrix for the preparation of Ag/TiO₂@Pani nanocomposites which exhibited enhanced electrical conductivity and visible light activity compared to Pani. Moreover, the Ag/TiO₂@Pani nanocomposite film showed promising prospects as a visible light active photocatalyst, which can be used repeatedly for photodegradation, and solved the problems generally faced in the case of a powder catalyst, where the recovery of the catalyst is a major problem.

Scanning electron microscopy

Figure 1 presents SEM images of the Pani and Ag/TiO₂@Pani film. Figure 1a shows that the Pani matrix provides a smooth platform for the anchoring of Ag/TiO₂ (the morphology of Ag/TiO₂ can be seen from Supporting Information Figures S1 and S2). The Ag/TiO₂ nanocomposite is distributed in the form of agglomerates with Pani because of the nucleation effect of Ag/TiO₂, giving flaky or tremella like morphology at different regions of film while regions with little or no Ag/TiO₂ showed smooth morphology similar to pure Pani film. Similar flaky/
morphology of Ag/TiO2@Pani nanocomposite

Pani and Ag/TiO2@Pani nanocomposite particles, Figure 1c and 1d corresponds to the fractured view of the film. The SEM image of Ag/TiO2@Pani nanocomposite film. Therefore, the major obstacle to the widespread use of Ag/TiO2 with Pani is its poor wettability and tendency to rope up in the solvents, which is similar to the aggregation behavior of the CNT@Pani film, as reported earlier.29 Ag/TiO2 exists as ropes or bundles because of the high van der Waal forces, which become entangled in the solid state to form a highly dense and complex structure, which is extremely resistant to wetting.

The nucleation behavior of Ag/TiO2 can also be explained based on the nucleation theory of solids in liquids. The physicochemical properties of Pani are largely affected by the confinement of Ag/TiO2 in different areas of the Pani matrix. This aggregation phenomenon depends strongly on the Ag/TiO2--Ag/TiO2 and Pani--Ag/TiO2 interactions.30 In terms of the interaction between Pani and Ag/TiO2, there are two types of forces, that is, adhesive forces (between Pani and Ag/TiO2) and cohesive forces (between Ag/TiO2 and Ag/TiO2). One possible explanation might be the cohesive force between the clustering molecules, which is certainly higher than the adhesive force between the Pani matrix and Ag/TiO2. As these forces are highly unbalanced, it gives rise to the very poor wetting of Ag/TiO2 by the Pani matrix. The Ag/TiO2 on the surface has more surface energy than those in the bulk due to unbalanced nature of the forces experienced by the molecules on the surface, as shown in Figure 2c. The migration and aggregation of Ag/TiO2 particles might be driven by the instability of the nanoparticles because of their high surface free energy, and their aggregation would produce thermodynamically stable clusters.31 The preferred sites for the aggregation of Ag/TiO2 are the phase boundary, where the effective surface energy is lower, which causes a decrease in the free energy barrier, thereby enhancing the nucleation process. SEM showed that the size of the Ag/TiO2 clusters increased to a certain critical size as the total free energy change reached maximum at a critical size. After this point, it decreases continuously to favor the stabilization and growth of the aggregate formation of Ag/TiO2 on to the Pani matrix32.

The aggregate formation behavior can be interpreted as interplay between particle-particle clustering and particle–substrate attraction, which is governed largely by the Pani matrix.33 The rate of nucleation, which is the reason for the aggregation of the Ag/TiO2 into the Pani matrix can be expressed mathematically using the following mathematic model.34

\[
\Delta G^* = J
\]

\(\Delta G^*\) is proportional to the probability of forming solid nuclei with excess energy, which is expressed as follows:

Figure 1. SEM images of (a) as-prepared Ag/TiO2@Pani, (b) Ag/TiO2@Pani after degradation of MB, (c) fractured side view of the Pani film, and (d) fractured side view of Ag/TiO2@Pani nanocomposite film.

Figure 2. Schematic diagram of the preparation of Ag/TiO2@Pani nanocomposite film. Panel c shows the balanced and unbalanced forces acting on Ag/TiO2 in the bulk and on the surface, respectively.

dx.doi.org/10.1021/am500488e | ACS Appl. Mater. Interfaces 2014, 6, 8124–8133
where k is Boltzmann’s constant and the pre-exponential factor J_0 depends upon the density of available nucleation sites. In classical heterogeneous nucleation theory,\(^\text{10}\) the energy barrier, ΔG^κ, is given by

$$\Delta G^\kappa = 16\pi^3 \beta \gamma (\theta) / 3 \Delta G^2$$\(^\text{(3)}\)

Equation 2 relates to the rate of nucleation and surface energy of the solid nuclei and eq 3 relates the energy barrier and surface energy of the molecule. Nucleation starts when this energy barrier or threshold is achieved. Lower the threshold, easier will be the nucleation and aggregation. Thus, it can be explained that possible way to decrease Ag/TiO$_2$ agglomerates is by increasing the surface area of Ag/TiO$_2$ nanocomposite. As with the enhancement of the surface area the barrier or threshold also increases consequently unfavoring the nucleation and stopping the aggregation.

X-ray Diffraction. Figure 3 shows XRD patterns of the Pani and Ag/TiO$_2$@Pani nanocomposite films. In case of Pani, a broad amorphous peak observed at 19.51° 2θ was assigned to the periodicity parallel to the polymer chain.\(^\text{28}\) XRD of Ag/TiO$_2$@Pani indicated that the nanocomposite is crystalline and showed a XRD peak for Pani at 19.51° 2θ, as well as XRD peaks for TiO$_2$, as reported elsewhere.\(^\text{23}\) Clear anatase and rutile phases of TiO$_2$ as well as Ag were observed without other detectable impurities. All XRD peaks corresponding to TiO$_2$ and Ag were well indexed to the tetragonal and face-centered cubic structures, respectively. The peaks of all constituents are indicated with their corresponding (hkl) parameters. These results suggest that TiO$_2$ and Ag are coexistent in the samples as two different and distinct materials with no interdiffusion. In addition, a thorough examination of the XRD patterns of the TiO$_2$ revealed anatase and rutile. The XRD patterns of anatase TiO$_2$ nanoparticles indicated that the position and intensity of the characteristic peaks of the samples were confirmed with the JCPDS file No. 73-1764. The rutile phase appeared in the XRD peaks and was confirmed by the JCPDS file No. 76-318. All the peaks of Ag in Figure 3 were assigned to the diffraction of the planes of face-centered cubic Ag (JCPDS file No. 04-0783). The relative abundance of anatase to rutile was calculated from the following equation:\(^\text{37}\)

$$F_h = 1.26I_h / (I_A + 1.26I_h)$$\(^\text{(4)}\)

where I_A and I_h are the strongest intensities of rutile (110) and anatase (101) peaks, respectively. The calculated phase percentages of the constituent anatase and rutile phases were approximately equal to 80% and 20%, respectively. To analyze the XRD patterns, the crystal structure was refined using the Rietveld profile fitting technique.\(^\text{38}\) The refinement was performed, assuming a tetragonal structure with the I41/amd space group (SG No. 141) for anatase, and the P42/mnm space group (SG no 136) for rutile. The observed and calculated patterns are in good agreement with each other. Supporting Information Table S1 shows all the lattice parameters obtained from the Rietveld refinement.

The maximum intensities of peak (101) for anatase, (110) for rutile, and (111) for Ag were used to quantify the crystallite sizes of TiO$_2$ and Ag. The mean crystallite sizes were estimated using the full width at half maxima of the XRD peaks. Using the Scherrer formula,\(^\text{39}\) the expression for the full width at half maximum of the XRD peaks can be expressed as

$$\beta_{\text{Size}} = k \lambda / t \cos \theta$$\(^\text{(5)}\)

where k is the grain shape factor (0.89 for spherical), λ is the wavelength of CuK$_\alpha$ (1.5406 Å) and t is the thickness of the crystal and θ is the Bragg’s angle. The mean crystallite sizes of the anatase and rutile phases of TiO$_2$ as well as Ag were \sim16, 23, and 6 nm, respectively (Supporting Information Table S1).

To examine the impact of dye degradation on Ag/TiO$_2$@Pani, the XRD patterns were also measured after the degradation of MB. The XRD patterns before and after the degradation of MB were similar, suggesting that the degradation experiments have little or no impact on the Ag/TiO$_2$@Pani nanocomposite film and thus the film can be used repeatedly.

Diffuse Reflectance/Absorbance Spectroscopy. The UV-vis diffuse absorbance spectra (Figure 4) and DRS (Supporting Information Figure S4) of Pani revealed two absorption peaks at 268 and 495 nm, which were assigned to a π→π transition of the benzenoid rings and charge transfer from the benzenoid to the quinoid, respectively. In the case of Ag/TiO$_2$@Pani, the peaks were blue shifted, which indicates the coordination of Ag/TiO$_2$ with a nitrogen atom, and a permitted interaction with each other via the π-conjugated system was observed. The blue shift upon the addition of Ag/TiO$_2$ is consistent with previous work in the case of Pd@Pani nanocomposites, where a blue shift occurred after the addition of Pd nanoparticles.\(^\text{40}\)

X-ray Photoelectron Spectroscopy. The surface characterization and chemical states of Ag/TiO$_2$ and Ag/TiO$_2$@Pani nanocomposite film was examined by XPS. The XPS survey scan of Ag/TiO$_2$ revealed the presence of C, Ag, O, and Ti, whereas in the case of Ag/TiO$_2$@Pani, in addition to these elements, N was also detected (Supporting Information Figure 2).
S5a). The peak in Supporting Information Figure S5(b) (C 1s = 284.6 eV) was assigned to residual carbon from the sample and hydrocarbons from the XPS instrument. Figure 5a presents the O 1s spectra of Ag/TiO2 and Ag/TiO2@Pani. The peak was assigned to the O bonds, such as Ti–O–Ti and Ti–O–H. The slight change in the binding energy of O 1s from 531.30 to 531.28 eV in the case of Ag/TiO2 and Ag/TiO2@Pani, respectively, is probably due to the strong interactions between the oxygen of TiO2 and imine nitrogen. The N 1s peak at 402.6 eV in Figure 5(b) corresponds to positively quinoid amine and benzenoid amine, which is consistent with the structure of Pani as reported by Mac Diarmid et al.42

Figure 5c presents the core level Ag 3d spectra of the Ag/TiO2 (367.73 eV) and Ag/TiO2@Pani (367.63) nanocomposite. Figure 5(d) presents the Ti 2p spectra of Ag/TiO2 (458.39 eV) and Ag/TiO2@Pani (458.13 eV) nanocomposites. The intense peaks for Ag and Ti were diagnostically identified, which might be due to the encapsulation of Ag into TiO2 inside the Pani matrix. Moreover, the existence of Ti 2p peak in Ag/TiO2@Pani is also shown in Supporting Information Figure S5c and in the inset of Figure 5d for clarity. A slight shift (decrease) in the binding energy of Ag 3d (0.10 eV) and Ti 2p (0.26 eV) in Ag/TiO2@Pani was observed, which was assigned to the interaction of Ag/TiO2 with Pani, probably via coordination between the imine nitrogen and titanium.43,44

Photoluminescence Studies. To examine the optical properties, a PL study of Ag/TiO2, Pani, and Ag/TiO2@Pani was carried out. PL can be exploited to understand the fate of e−/h+ pairs, the efficiency of charge carrier trapping, and migration in materials. The PL spectra can be decomposed into several bands that are associated with different radiative recombination processes of the charged carriers produced by band–band irradiation.45 Figure 6 presents the PL spectra for the different samples. In the case of Ag/TiO2, there was a shift in the emission peak from ~518 nm (for pure TiO2) to ~455 nm, which might be the result of the transition related to free exciton O2−→Ti4+ charge transfer.46 The peaks from 450−500 nm were assigned to free electrons recombination from the conduction band to the recombination center at the ground state. In the case of Ag/TiO2@Pani, the emission peak at ~450 nm is slightly higher or comparable in intensity to Ag/TiO2 while the intensity decreases with the increase in wavelength and the peak at ~540 nm had lower intensity, indicating slightly lower recombination rate of electrons than Ag/TiO2. This suggests that the photo-induced electrons and holes are trapped by the synergistic effect in the Ag 3d energy level and by Pani, which improves the separation and suppresses the automatic recombination process of photogenerated electrons and holes in Ag/TiO2@Pani compared to Pani and Ag/TiO2. In other words, weaker the excitonic PL spectra, the higher the separation rate of the photo-induced charge carriers, which will favor the photocatalytic activity.

Thermogravimetric Analysis. TGA was used to examine the thermal stability of the Ag/TiO2@Pani nanocomposite film compared to the Pani film. Pani and Ag/TiO2@Pani nanocomposite followed similar weight loss pattern in the three major stages of weight loss. The first weight loss until ~150 °C was attributed to the loss of water and other volatile impurities. The weight loss from ~150 to 400 °C was assigned to the removal of higher oligomers and residual NMP.47 The degradation curve revealed massive weight loss because of thermo-oxidative decomposition of Pani, which occurs in the temperature range of ~400−550 °C.48 The DTA curve showed a sharp peak at ~510 and ~525 °C for Pani and Ag/TiO2@Pani, respectively. Thus, it can be interpreted that Ag/TiO2 has some stabilizing interaction with Pani, hence an increase in the stability (Figure 7). The weight loss due to the decomposition of Pani and Ag/TiO2@Pani involves the evolution of degradation products, such as ammonia, aniline, p-phenyl-enediamine, N-phenylaniline, N-phenyl-1,4-benzenediamine, carbazole, pyridine-based heterocycle, methane, acetylene, etc.49

The activation energy (Ea) for the thermo-oxidative degradation of the materials was evaluated using the well-known integral method reported by Broido.47,48 According to the Broido eqs 6 and 7;

\[
\ln \left[\frac{\ln \left(\frac{1}{Y} \right)}{T^4} \right] = - \frac{E_a}{RT} + \varepsilon
\]

(6)

\[
Y = \frac{Y_0 - Y_{\infty}}{Y_0 - Y_{\infty}}
\]

(7)
where \(Y \) is the fraction of the samples not yet decomposed, \(w_0 \) and \(w_\infty \) are the initial and final weight, and \(w_c \) is the weight at a particular time. The activation energy \((E_a) \) for the degradation process was derived from the slope of the plots (as shown in Supporting Information Figure S6) of \(\ln(\ln(1/Y)) \) vs 1000/\(T \) (K\(^{-1}\)). From the DTA curve, it can be seen that degradation of Pani takes place at \(\sim 510 \) and for Ag/TiO\(_2@\)Pani, the degradation starts at \(\sim 525 \) °C. Thus, the activation energy was calculated for that region. The activation energies of Pani and Ag/TiO\(_2@\)Pani were found to be 30.21 and 34.86 kJ/mol, respectively. It should be taken into account that Ag/TiO\(_2@\)Pani is a multicomponent system and there are multiple factors that should be considered. The system cannot be considered a linear process, the first part was until \(\sim 500 \) °C and the later part started from 500 to 800 °C, whereas degradation of the Pani backbone occurred. These two parts of the degradation process are strongly dependent on (a) interaction of Ag/TiO\(_2\) between the Pani chains and (b) thermal stability of Ag/TiO\(_2\), and these two processes compete with each other.

TGA suggests that initially, the weight loss until \(\sim 500 \) °C in the case of Ag/TiO\(_2@\)Pani is higher in comparison to Pani. However, from 500 °C onwards, the weight loss for Pani and Ag/TiO\(_2@\)Pani were found to be \(\sim 40\% \) and 28%, respectively (Figure 8). Kumar et al. in their Cu@Pani and Cu\(_2\)O@Pani composites showed that the perturbation of the nanomaterials affects the three dimensional structure of the polymer, which might weaken the van der Waals’s interactions between the polymer chains, thereby affecting the stability of the polymer. In the light of his observations, it can be interpreted that the interaction between Pani and Ag/TiO\(_2\) may affect the three-dimensional Pani structure, thereby initially triggering greater weight loss until \(\sim 500 \) °C. Another factor is the higher thermal stability of Ag/TiO\(_2\) in comparison to Pani, which requires much higher temperature for degradation. Thus, the stabilization effect of Ag/TiO\(_2\) dominates at higher temperature and contributes for the stability above 500 °C.

Electrical Conductivity. The DC electrical conductivity of HCl doped Pani and Ag/TiO\(_2@\)Pani nanocomposite film was measured using a 4-in-line probe technique. The electrical conductivity showed an increase from 4.59 S/cm to 5.45 S/cm after loading with Ag/TiO\(_2\). Nagaraja et al. in their pPTSA doped TiO\(_2@\)Pani nanocomposite reported that the addition of TiO\(_2\) increases the compactness of the sample, causing greater coupling through the grain boundaries, which in turn enhances the electrical conductivity. This suggests that in the Ag/TiO\(_2@\)Pani nanocomposite film, Ag/TiO\(_2\) leads to a decrease in the conjugated lengths in the Pani chains. In addition, a small number of nanoparticles are believed to act as a more efficient network for charge transport, by hopping or tunneling, resulting in an increase in the electrical conductivity.

Pani and Ag/TiO\(_2@\)Pani nanocomposite films were also studied for DC electrical conductivity retention under cyclic aging conditions (Supporting Information Table S2). Pani and the Ag/TiO\(_2@\)Pani nanocomposite film showed an increase in electrical conductivity at higher temperatures, which is normal thermal activation behavior. The subsequent cycle showed similar loss behavior but the Ag/TiO\(_2@\)Pani film showed greater retention (21.46% compared to 13.29% in the case of Pani) in the DC electrical conductivity than Pani. The increase or decrease in the electrical conductivity of the doped nanocomposite film during the cyclic aging experiment might be due to various competing factors. The increase in electrical conductivity might be attributed to, for example, (1) the doping by H\(^+\) ions of acid, (2) the annealing effect during heating/cyclic aging conditions, (3) the presence of trapped moisture in the film, (4) the plasticizing effect of any traces of solvent (NMP) present, (5) the high electrical conductivity of Ag, and (6) elevation of temperature because of an increase in the number of charge-carriers, etc. The decrease in electrical conductivity might be attributed to, for example, (1) the removal of H\(^+\) ions of the acid, (2) the poor electrical conductivity of TiO\(_2\), (3) the removal of trapped moisture in the nanocomposite film at high temperatures, and (4) degradation of the conducting polymer at elevated temperature etc.

Photoelectrochemical Studies. Figure 9a shows the EIS Nyquist plots of the Pani and Ag/TiO\(_2@\)Pani nanocomposite film in dark and under visible light irradiation. The EIS Nyquist plot showed the arc radius of the Ag/TiO\(_2@\)Pani nanocomposite film, which was smaller than that of the Pani film. The arc radii of the Ag/TiO\(_2@\)Pani photocatalysts were smaller than those of Pani in the cases of dark and under visible light
irradiation. This suggests that the Ag/TiO$_2$@Pani photocatalysts have lower resistance than the Pani, which can accelerate the interfacial charge-transfer process. This also shows that the more effective separation of photogenerated electron hole pairs and faster interfacial charge transfer occurred in the Ag/TiO$_2$@Pani nanocomposite film. This confirmed that the Ag/TiO$_2$@Pani photocatalyst has the lowest charge transfer resistance and is most suitable for photocatalytic applications. These enhanced photoelectric characteristics suggest that the interfacial interaction of Ag/TiO$_2$ and Pani can effectively improve the photocatalytic efficiency of Pani. To examine the possible mechanisms for the enhanced visible light photoactivity (i.e., photocurrent), LSV for Ag/TiO$_2$@Pani and Pani films were performed in dark and under visible light irradiation. Photocurrent measurements can be useful to understand the synergistic effect of the individual components (Ag/TiO$_2$ and Pani) of the nanocomposite materials. Figure 9b shows the photoresponse of Ag/TiO$_2$@Pani and Pani in dark and under visible light irradiation. The photocurrent of the Ag/TiO$_2$@Pani film was improved compared to the Pani film. Ag/TiO$_2$@Pani showed higher photocurrent than Pani under the same conditions, suggesting that the Ag/TiO$_2$@Pani exhibited stronger ability for the separation of electron−hole pairs than Pani, as also revealed by PL analysis. An improvement in the photocurrent for Ag/TiO$_2$@Pani showed that it can be motivated easily by visible light, thereby producing more photoinduced carriers, resulting in higher visible photocatalytic activity. Similar trends have also been previously reported. This suggests that the separation efficiency of photoinduced electrons and holes was enhanced considerably through the synergistic effect of Ag/TiO$_2$ and Pani.

Visible Light Photocatalytic Activities of Ag/TiO$_2$@Pani and Pani. Supporting Information Figure S7 shows the photocatalytic activity of the Pani and Ag/TiO$_2$@Pani under visible light irradiation, which indicates the photodegradation efficiency of Ag/TiO$_2$@Pani for the degradation of MB. The performance of Ag/TiO$_2$@Pani film was significantly higher than that of the Pani film. Furthermore, the photocatalytic degradation kinetics of MB by Pani and Ag/TiO$_2$@Pani film was calculated by equation reported elsewhere and the result is shown in Figure 10. The rate constant (k) of the Pani and Ag/TiO$_2$@Pani for the degradation of MB were found to be 0.0406/h ($R^2 = 0.9516$) and 0.2695/h ($R^2 = 0.9537$), respectively. The k value of the Ag/TiO$_2$@Pani showed ~7 times higher visible light degradation of MB than Pani. Figure 11 shows the mechanism for the photo generation of charge carriers on the surface of the Ag/TiO$_2$@Pani photocatalyst.

Under visible light irradiation, Pani absorbs light to induce a $\pi \rightarrow \pi^*$ transition, transporting the excited-state electrons to the π orbital. These excited-state electrons are readily injected into the conduction band of TiO$_2$, are subsequently transferred to the surface, and react with adsorbed water and oxygen to yield hydroxyl and superoxide radicals. Furthermore, during visible light irradiation, the equilibrated Fermi level electrons of Ag are
injected rapidly into the TiO₂ conduction band via a surface plasmon resonance (SPR) mechanism (Figure 11).^{5,6–61} These injected electrons are trapped by adsorbed oxygen/water molecules on Ag/TiO₂ to yield hydroxyl and superoxide radicals.^{58,59} Therefore, large amounts of oxidative radical formation are responsible for enhanced photocatalytic activity of Ag/TiO₂@Pani photocatalyst. Because of the synergy between Ag/TiO₂ and Pani, rapid photogenerated charge separation and relatively slow charge recombination enhances the photocatalytic activity of the Ag/TiO₂@Pani photocatalyst significantly.

CONCLUSIONS

Ag/TiO₂@Pani nanocomposite film was prepared successfully via a simple biogenic-chemical route. The nanocomposite film was also studied for the thermolectric behavior. The Ag/TiO₂@Pani nanocomposite film showed higher conductivity (5.45 S/cm) than Pani film (4.59 S/cm) due to the high mobility of charge carrier and the presence of Ag/TiO₂. The Ag/TiO₂@Pani nanocomposite film examined under cyclic aging conditions showed more retention of the DC electrical conductivity than Pani film. The nanocomposite film showed superior visible light photocatalytic activity in the decomposition of MB than Pani. The recycling test showed that the Ag/TiO₂@Pani nanocomposite film can be used repeatedly without much loss in visible light activity, which is advantageous compared to the powder photocatalyst, where the recovery of catalyst is a tedious job. The high photocatalytic activity can be attributed to the synergistic effect originating from the excited state electrons, which are injected readily into the conduction band of TiO₂. These injected electrons are trapped by oxygen/water molecules adsorbed on Ag/TiO₂ to yield the hydroxyl and superoxide radicals responsible for the photodegradation process. Because of their better photocatalytic and thermoelectric performance, this material is believed to be suitable replacement for Pani in a range of electrical and electronic devices.

ASSOCIATED CONTENT

Supporting Information

Structural refined data of TiO₂ in Ag/TiO₂@Pani, DC electrical conductivity of Pani and Ag/TiO₂@Pani, TEM, HR-TEM Ag/TiO₂, SEM of Pani and Ag/TiO₂@Pani, of DRS, XPS survey spectra, C 1s spectra, DTA, activation energy curve, and plot of C/C₀ versus the irradiation time for the photodegradation of MB. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

TEL.: +82-53-810-2517. Fax: +82-53-810-4631. E-mail: mhcho@ynu.ac.kr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant 2012R1A1A4A01005951).

REFERENCES

