Skip to main content
Article
Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies
Journal of Materials Chemistry A (2014)
  • Mohammad Mansoob Khan, Dr
  • S A. Ansari
  • D Pradhan
  • D H Han
  • J Lee
  • M. H. Cho
Abstract
Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were carefully examined to understand the band gap reduction of m-TiO2. The visible light-responsive enhanced photocatalytic activity of m-TiO2 was demonstrated by degrading methylene blue and brilliant blue G. The EIS and LSV under dark and visible light irradiation further support the visible light-induced photocatalytic activities of the m-TiO2 due to a decrease in electron transfer resistance and an increase in photocurrent. This study confirms that m-TiO2 can be used effectively as a photocatalyst and photoelectrode material owing to their enhanced visible light-induced photocatalytic activity.
Keywords
  • Band gap engineered TiO2; Band gap narrowed TiO2; band gap engineering; Visible light active TiO2; Photocatalysis; electrochemical impedance spectroscopy; linear scan voltammetry; Photocurrent
Publication Date
January 1, 2014
Citation Information
Mohammad Mansoob Khan, S A. Ansari, D Pradhan, D H Han, et al.. "Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies" Journal of Materials Chemistry A Vol. 2 (2014)
Available at: http://works.bepress.com/mmansoob_khan/36/