Skip to main content
Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems
SIAM Journal on Optimization
  • Mingyi Hong, Iowa State University
  • Zhi-Quan Luo, University of Minnesota - Twin Cities
  • Mesiam Razaviyayn, Stanford University
Document Type
Publication Version
Published Version
Publication Date
The alternating direction method of multipliers (ADMM) is widely used to solve large-scale linearly constrained optimization problems, convex or nonconvex, in many engineering fields. However there is a general lack of theoretical understanding of the algorithm when the objective function is nonconvex. In this paper we analyze the convergence of the ADMM for solving certain nonconvex consensus and sharing problems. We show that the classical ADMM converges to the set of stationary solutions, provided that the penalty parameter in the augmented Lagrangian is chosen to be sufficiently large. For the sharing problems, we show that the ADMM is convergent regardless of the number of variable blocks. Our analysis does not impose any assumptions on the iterates generated by the algorithm and is broadly applicable to many ADMM variants involving proximal update rules and various flexible block selection rules.

This is an article from SIAM Journal on Optimization 26 (2016): 337, doi:10.1137/140990309 Posted with permission.

Copyright Owner
File Format
Citation Information
Mingyi Hong, Zhi-Quan Luo and Mesiam Razaviyayn. "Convergence Analysis of Alternating Direction Method of Multipliers for a Family of Nonconvex Problems" SIAM Journal on Optimization Vol. 26 Iss. 1 (2016) p. 337 - 364
Available at: