San Jose State University

From the SelectedWorks of Minghui Diao

July 23, 2015

Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NASA ATTREX, NSF HIPPO and EU INCA campaigns

Minghui Diao, National Center for Atmospheric Research Jorgen B. Jensen, National Center for Atmospheric Research

Comparisons of cirrus cloud and ice supersaturation characteristics by using CO as a tropospheric tracer based on ATTREX, HIPPO, INCA and START08 campaigns

Minghui Diao

Advanced Study Program, Research Aviation Facility, National Center for Atmospheric Research Incoming assistant professor to the Dept. of Meteorology and Climate Science, San Jose State University Collaborators:

Drs. Jorgen B. Jensen (Postdoc advisor, NCAR/EOL), Ulrich Schumann (German Aerospace Center (DLR)), Eric Jensen (NASA Ames), Xiaoxiao Tan and Yi Huang (McGill)

SPEC FCDP probe: Paul Lawson, Sarah Woods (SPEC Inc.)

NASA DLH hygrometer: Glenn Diskin, Josh DiGangi (NASA Langley)

Harvard HUPCRS instrument: Steven Wofsy, Bruce Daube, Jasna Pittman (Harvard)

VCSEL hygrometer PI: Mark A. Zondlo (Princeton)

Quantum Cascade Laser Spectrometer DUAL instrument PI: Steven C. Wofsy (Harvard Univ.)

ATTREX science team; HIPPO campaign science team; INCA campaign science team 2015-July-23

Outline

Motivation

- Climate effects of cirrus clouds
- Large radiative forcing difference between cirrus and their birthplace ice supersaturation

Datasets

- NASA Airborne Tropical TRopopause Experiment (ATTREX) campaign 2014
- The NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign
- The Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign funded by the European Union
- The NSF Stratosphere-Troposphere Analyses of Regional Transport (STARTO8) campaign

Analysis

- Distributions of ice supersaturation in relation to temperature and CO
- Comparisons of cirrus microphysical properties by using CO as a tropospheric tracer
 - Ice crystal number concentration at different CO concentrations
 - Ice crystal number-weighted mean diameter at different CO concentrations

Discussions and future work

Large uncertainties in cloud perturbations

Anthropogenic greenhouse gases:
~3 W m-2

Global cloud net forcing: ~- 20 W m⁻² (Chen et al. 2000)

~15% change of global cloud radiative forcing-> Anthropogenic GHG

Cirrus clouds and ice supersaturation

Cirrus clouds

- **235-185K, ~30% coverage** (Wylie and Menzel, 1999)
- Warming and cooling effects
 - Global net forcing +5.4 W m⁻² (chen et al. 2000)
 - Microphysical & macroscopic properties (Liou 1992; Pruppacher and Klett 1996)

Important to understand the transition from ISS to cirrus clouds

(Solomon et al., 2010, Science)

Ice Supersaturation (ISS)

Prerequisite condition for ice crystal formation

ISS = RHi - 1 =
$$e / e_s - 1$$

e: water vapor pressure

e_s: saturation vapor pressure wrt ice

Difference in radiation between ISS and cirrus clouds

Differences in TOA net radiation (W/m²)

RRTMG calculation: Replacing observed ISS with artificial ice crystals

NSF Stratosphere-Troposphere Analyses of Regional Transport (STARTO8) campaign

Up to ~20-30 W/m2 differences in TOA net radiation

Red: Clear-sky ISS
Blue: In-cloud ISS

Collaboration with Xiaoxiao Tan and Dr. Yi Huang at McGill University, Canada

NASA Airborne Tropical TRopopause EXperiment (ATTREX) campaign 2014 deployment (Jan15–Mar14 2014)

- Ice crystals: SPEC FCDP probe, 1-50 micron
- Water vapor data: NASA **DLH** instrument
 - 1 s data
- CO data: Harvard **HUPCRS** instrument
 - 10 s data
 - CO concentration is generally at 50–85 ppbv
- Vertical wind velocity: NASA Ames Research Center, Meteorological Measurement System (MMS) 3-D wind (1 Hz)
- All ice crystal and ice supersaturation analysis is restricted to T ≤ -40°C
 - Cirrus cloud temperature range in ATTREX campaign is much lower (i.e., typically -65°C to -80°C) than those in HIPPO and INCA campaigns (i.e., typically -40°C to -65°C).

Using CO chemical tracer as a tropospheric tracer:

- Synchronized measurement with H₂O and ice crystals
- Less interaction with clouds

ATTREX (2014): Ice supersaturation (ISS) conditions in relation to T and CO

ATTREX: Higher ISS occurrence frequency around -85 to -89 C;
Consistent with high ISS frequency around extratropical tropopause (Diao et al. 2015 JGR)

Needs more analysis of ISS distribution in relation to tropical tropopause

110

ATTREX (2014): ISS conditions in relation to Temperature and CO concentration

"In-cloud condition" defined as FCDP ice crystal number concentration (Nc) $> 0 L^{-1}$

Most of the ISS observations below -70°C have ~50% ISS at clear-sky condition and ~50% ISS at in-cloud condition

ATTREX (2014): Ratio of clear-sky vs in-cloud ISS

Ratio of 1-Hz ISS observations at clear-sky vs. total (in-cloud + clear-sky) condition

Average vertical velocity for ISS observations

Average vertical velocity inside ISS mostly

within +/- 20 cm/s

Updraft of 60 to 120 cm/s at higher CO concentration

NSF HIAPER Pole-to-Pole Observations (HIPPO) Global flight campaign #1-5 (2009-2011) (Wofsy et al., 2011)

- Latitudinal: 87°N to 67°S
- Vertical: ~600 transects from surface to the upper troposphere and lower stratosphere (UT/LS)
- Resolution: ~200 m; Duration: ~400 hr; 1-Hz observations
- All analysis restricted to T≤-40°C; Ice crystals (restrict to 87.5 μm 1600 μm);
- Most cirrus clouds observed in HIPPO were extratropical in situ cirrus.

Comparison of ISS conditions between ATTREX 2014 and HIPPO#2-5:

HIPPO#2-5: Distributions of F2DC number-weighted mean diameter (Dc) and ice crystal concentration (Nc) in relation to carbon monoxide (CO)

Remaining questions:

- Lack of measurements of small ice crystals in HIPPO
- What other factors can also contribute to the smaller Dc values?

Complex problem: Multiple factors can potentially influence ice crystal formation:

- [1] Relative humidity
- [2] Vertical wind speed
- [3] Temperature
- [4] Aerosol content and concentrations

European Community, Fifth Framework Programme

- Partners:
- Stockholm University (Coordinator), SW
- DLR (German Aerospace Centre), DE
- University of Helsinki, FI
- LaMP, University of Clermont-Ferrand, FR
- NILU (Norwegian Institute for Air Research), NO
- LMD (Laboratoire de Météorologie Dynamique du CNRS), FR

INCA:

aerosol/cirrus measurements near **50°S** and **50°N**.

Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions: The INCA Project 2000 - 2002

INCA data: Ice crystal concentration (Nc) at different CO concentrations

INCA campaign:

Analyzing **both** smaller ice crystals (3-20 μ m) and larger ice crystals (100-800 μ m).

Remaining question:

FSSP-300 instrument in INCA campaign was subject to **shattering** effect. Does shattering occur more frequently at higher CO concentrations?

ATTREX (2014): SPEC FCDP ice crystal concentration (Nc) and number-weighted mean diameter (Dc) at different CO concentrations

ATTREX (2014): SPEC FCDP ice crystal concentration (Nc) at different CO

ATTREX campaign:

For -70 to -80°C and -80 to -89°C, Nc values seem to *differ* between higher and lower CO concentrations, but not for -60 to -70°C

Whether Nc and Dc distributions differ between higher and lower CO concentration is still an open question

Future work: separating other factors' influences (such as T, w) and investigate the **size distributions** of ice particles.

Future work

 Analyze the <u>origin of air parcels</u> with high CO concentration by using chemical tracer analysis and back trajectories;

 Current analysis may be subject to the particularity of geographical locations, thus analysis of more flight campaigns are needed;

 Comparisons with climate models (e.g., CAM5) for the representation of ice supersaturation

