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Abstract We use aircraft observations combined with the reanalysis data to investigate the radiative
effects of ice supersaturation (ISS). Our results show that although the excess water vapor over ice
saturation itself has relatively small radiative effects, mistaking it as ice crystals in climate models would lead
to considerable impacts: on average, +2.49W/m2 change in the top of the atmosphere (TOA) radiation,
�2.7W/m2 change in surface radiation, and 1.47 K/d change in heating rates. The radiative effects of ISS
generally increase with the magnitudes of supersaturation. However, there is a strong dependence on the
preexisting ice water path, which can even change the sign of the TOA radiative effect. It is therefore
important to consider coexistence between ISS and ice clouds and to validate their relationship in the
parameterizations of ISS in climate models.

1. Introduction

Ice supersaturation (ISS) is a condition where relative humidity with respect to ice (RHi) is greater than 100%,

and it frequently occurs in the upper troposphere and lower stratosphere (UTLS) [e.g., Heymsfield et al., 1998;

Gierens et al., 1999;Gettelman et al., 2006; Jensen et al., 2013;Diao et al., 2014]. As the prerequisite condition for

ice crystal formation, ISS can exist in both clear-sky and in-cloud conditions, as previously reported by in situ

and satellite observations [e.g., Brewer, 1946; Heymsfield et al., 1998; Comstock et al., 2004; Gettelman et al.,

2006; Krämer et al., 2008; Lamquin et al., 2012; Diao et al., 2013]. In fact, aircraft observation analysis showed

that a large percentage (>50%) of in-cloud conditions are ice supersaturated, and the in-cloud RHi magni-

tudes can be over 150% for temperatures at �40°C to �69°C [Diao et al., 2014; Jensen et al., 2001].

However, the representations of the coexistence between ISS and ice crystals can be oversimplified in general

circulation models (GCMs). For example, ISS would be immediately relaxed to ice saturation once ice nuclea-

tion occurs in the scheme of Tompkins et al. [2007], and other improved process-oriented cirrus schemes still

assume homogeneous vapor distribution for in-cloud conditions [Kärcher and Burkhardt, 2008; Wang and

Penner, 2010; Wang et al., 2014]. Thus, the representations of ISS in both clear-sky and in-cloud conditions

in GCMs still warrant improvements, and quantifying the potential biases associated with the radiative forcing

of ISS would benefit future development of ISS parameterizations.

The radiative forcing of ISS is influenced by its spatial extent (in the vertical and horizontal) as well as the

microphysical properties of ice crystals embedded in it. For the spatial scales of ISS, previously, in situ observa-

tions from the European Measurement of Ozone and Water Vapor by Airbus In-service Aircraft program have

been used to provide a distribution law of the ISS horizontal spatial extent [Gierens and Spichtinger, 2000], and

radiosonde observations over Lindenberg have been used to derive the vertical depth distribution of ISS

layers [Spichtinger et al., 2003]. However, as the recent analyses based on 1Hz (~200m horizontal resolution)

aircraft-based observations reported, the horizontal scale of ISS has mean and median lengths at ~3 km and

1 km, respectively [Diao et al., 2014]. These results revealed a much patchier spatial structure of ISS conditions

than the previously reported ones with an ~150 km median length [Gierens and Spichtinger, 2000]. The
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influences of these microscale ISS, which are on the subgrid scales of most climate model simulations (~10–

100 km), have yet to be quantified.

Satellite measurements have been used to estimate the occurrence frequencies of ISS in different seasons,
geographical locations, and pressure levels [Gierens et al., 2000; Kahn et al., 2009; Lamquin et al., 2012].
However, the radiative impacts of ISS have not been assessed using high-accuracy in situ observations on
a global scale. Furthermore, the correlation between the horizontal and vertical extents of ISS has not been
systematically analyzed. Water vapor and ice crystals in cirrus clouds, although both consisting of H2O mole-
cules, have vastly different impacts on the radiation energy budget. A previous study based on idealized
representation of ISS shows that the radiative effects of a typical midlatitude clear-sky ISS region can be sig-
nificant [Fusina et al., 2007]. Although the outgoing longwave radiation (OLR) only decreases slightly (up to
0.8W/m2) due to the absorption by the excess water vapor (EWV) over saturation, if the EWV were replaced
by artificially formed thin cirrus, this could produce up to 3 K/d, 38W/m2, and 40W/m2 differences in heating
rates, OLR, and surface flux, respectively. Tompkins et al. [2007] and Gettelman and Kinnison [2007] examined
the potential global impacts of ISS based on simple schemes in the general circulationmodel. Their sensitivity
tests showed that allowing ISS in the simulation leads to decreases in high cloud coverage and increases in
water vapor, which change the globally averaged top of the atmosphere (TOA) radiation flux by ~0.8W/m2

(0.2W/m2 in Tompkins et al. [2007]).

In this paper, we quantify the spatial characteristics and radiative impacts of ISS in the UTLS region based on
~200m horizontal resolution, in situ data obtained from several recent aircraft campaigns. Five National
Science Foundation (NSF) flight campaigns on board the NSF/National Center for Atmospheric Research
(NCAR) Gulfstream-V (GV) research aircraft are used in this study. In section 2, we will first describe and sum-
marize the primary features of the ISS conditions used in this study. Then we will explain how the radiative
effect of ISS is assessed and discuss the results in section 3. We will summarize this study and discuss its sig-
nificance, as well as caveats, in section 4.

2. ISS Data
2.1. ISS Measurements

In this study, we use the aircraft-based, in situ observations from the NSF GV research aircraft during five cam-
paigns: the Stratosphere Troposphere Analyses of Regional Transport 2008 (START08) campaign [Pan et al.,
2010], the High-performance Instrumented Airborne Platform for Environmental Research Pole-to-Pole
Observations (HIPPO) from 2009 to 2011 [Wofsy et al., 2011], the Pre-Depression Investigation of Cloud-
systems in the Tropics (PREDICT) in 2010 [Montgomery et al., 2012], the Tropical Ocean Troposphere
Exchange of Reactive halogen species and Oxygenated VOC (TORERO) in 2012 [Volkamer et al., 2015], and
the Deep Convective Clouds and Chemistry Project (DC3) in 2012 [Barth et al., 2015]. All the samples used
here are restricted to temperatures ≤�40°C to eliminate the coexistence of supercooled liquid water droplets
with ice crystals.

The 1Hz relative humidity values are derived fromwater vapor and temperature measurements during the in
situ observations, which have accuracy (and precision) of ~ ±6% (±1%) and ~±0.5 K–1 K (±0.01 K), respec-
tively. Water vapor measurements were collected by the Vertical Cavity Surface Emitting Laser (VCSEL) hygro-
meter [Zondlo et al., 2010], and temperature was recorded by a Rosemount temperature probe. These two
measurements contribute to combined uncertainties of ~8%–18% in RHi for temperatures at 233–196 K.
The horizontal resolution of the in situ data was ~240m given the measurement frequency of 1Hz and mean
true air speed of the research aircraft of 240m/s.

Ice particle measurements in all five campaigns were sampled by the NCAR Fast Two-Dimensional Cloud
Probe (Fast-2 DC) [Stith et al., 2014]. For START08 campaign, we combine the additional ice crystal measure-
ments from a second ice probe—the Small Ice Detector-2H instrument (SID-2H)—with the measurements
from Fast-2 DC probe for analysis of in-cloud conditions and ice water content. Similar to the in-cloud and
clear-sky analyses in a previous study of Diao et al. [2015], the in-cloud condition is defined as where at least
one ice particle per 16 cm3 has been detected at 1Hz scale, while the remaining samples are considered to be
clear sky (i.e., cloud-free). The measurement ranges of SID-2H and Fast-2 DC are 5–50μm and 75–1600μm,
respectively. To alleviate the potential shattering effects of the Fast-2 DC probe, this study analyzes ice water
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content rather than ice crystal number concentration. Details of the water vapor, temperature, and ice crystal
measurements are discussed in Diao et al. [2015].

2.2. ISS Characteristics

Based on the aircraft observations, there are 2988 clear-sky ISS samples and 890 in-cloud samples in five cam-
paigns. One ISS sample corresponds to the region where ISS is continuously observed. The length of ISS
ranges over several orders of magnitude in scale, from ~100m to 100 km. In order to better represent the
average radiative impact and the properties of ISS, we use the length-weighted average value of total sam-
ples in the following presentation (if not otherwise stated):

x ¼ ∑xili=∑li; (1)

li is the length of each ISS sample and x represents a certain property of ISS (e.g., RH and pressure).

Typically, the research aircraft either conduct vertical profiles or maintain the horizontal flight. In the former
case, the aircraft transects through an ISS layer in one direction and likely captures the full depth of the ISS
layers. In the latter case, the aircraft maintains horizontal flight with small variations in altitude and pressure
and therefore may not capture the real depth of the ISS layers. To remedy the potential incomplete transect
in the latter case, we derive a linear correlation between ISS horizontal and vertical extent for each campaign
only using samples in the former case: thickness = a+ b * length (see Figure S2 in the supporting informa-
tion). Here a and b are the regression coefficients with a= 1.2, �4.0, �5.2, �10.3, and 5.7, b= 0.003, 0.024,
0.017, 0.037, and 0.02 for PREDICT, TORERO, DC3, START08, and HIPPO, respectively. The upper limits of the
thicknesses of ISS samples used for linear regressions in the five campaigns are 1536, 919, 1689, 1519, and
1799m, respectively, which denote the maximum thicknesses of the samples used in the regressions. Then
we predict the vertical depths of ISS samples in the latter case from their horizontal extents by using the lin-
ear regression equations determined above. When a negative thickness is predicted, we use the original mea-
surements for the thickness. When the predicted thickness exceeds the upper limits as denoted above, we set
the thickness to be the respective upper limit in each campaign.

From Figure 1, most of the ISS samples are located in the upper troposphere. More than half are less than
100m thick. Over the tropics, samples in the PREDICT campaign have lower average thickness, lower EWV
content, and higher preexisting ice water path (IWP) compared to TORERO. And over the North American
continent, the DC3 samples are on average of lower thickness, lower EWV, and higher IWP than the
START08 samples. Overall, the length-weighted altitude, RHi, thickness, EWV content, and IWP in all the sam-
ples in the five campaigns are 223 hPa, 110.4%, 665m, 3.0 g/m2, and 42.3 g/m2, respectively. See Figure S3 for
more discussion on the ISS characteristics.

3. Radiative Effects of ISS in Five Campaigns
3.1. Configurations of the Radiative Transfer Calculation

In order to determine the radiative impacts of ISS, we calculate and compare the radiative quantities under
three scenarios: (1) ISS as in situ observed; (2) excluding ISS, by removing the EWV over saturation; and (3)
the artificially formed cirrus clouds, by replacing the EWV with artificially formed ice crystals at saturation
of the same amount of total water content. The first type of radiative effect of ISS is defined as the difference
between Scenarios 2 and 1, which represents the error of neglecting ISS (i.e., excluding the EWV). The second
type of radiative effect of ISS is defined as the difference between Scenarios 3 and 1, which represents the
error of mistaking the EWV as artificially formed ice crystals. Following Fusina et al. [2007], we measure the
ISS radiative effects on heating rates (REhtr) by summing up the increases in the lower boundary heating
and in the upper boundary cooling:

REhtr ¼ htr xð Þ � htr yð Þj jupper þ jhtr xð Þ � htr yð Þjlower; (2)

where x and y denote different scenarios (1–3).

Here we use the rapid radiative transfer model (RRTMG) [Iacono et al., 2008] for calculating the radiative fluxes
and heating rates. RRTMG adopts the correlated-k approach and absorption coefficient data determined
from line-by-line radiative transfer calculation [Clough et al., 1992]. There are 16 bands in the longwave
(10–3250 cm�1) and 14 bands in the shortwave (820–50,000 cm�1), respectively. Modeled sources of extinc-
tion include H2O; O3; well-mixed greenhouse gases such as CO2, CH4, and N2O; aerosols; clouds; and Rayleigh
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scattering (shortwave only). The concentrations of well-mixed greenhouse gases are fixed to be the global
mean values of year 2010: CO2: 388 ppm, CH4: 1.8 ppm, and N2O: 323 ppb. For cloudy cases, RRTMG uses
Monte Carlo Independent Column Approximation [Pincus et al., 2003] to represent subgrid cloud variability.
The maximum-random cloud overlapping scheme is used in our calculations. The ERA-Interim atmospheric
variables used here include air temperature, specific humidity, ozone mixing ratio, surface pressure, surface
temperature, and albedo. For each in situ observed ISS sample, we select the nearest time and location from
reanalysis data to gain the input profile for RRTMG calculations. We also set the solar zenith angle appropriate
to sample measurement time and location. The top of the profile is set as 1 hPa to be consistent with the rea-
nalysis data. The atmospheric variables are interpolated to 20 hPa thick layers between 1000 hPa and 100 hPa,
in addition to 30 layers over 100 hPa.

The radiative effect of ISS is calculated for single ISS layers, which means that only one observed ISS layer,
with cloud ice particles as measured, is inserted into each reanalysis profiles and no other cloud layers are
considered. Because 63% of the ISS samples are less than 100m thick (see Figure 1), we calculate the appro-
priate amount of the EWV in terms of water vapor volumemixing ratio within ISS layers in each 20 hPa layer as

qv ¼ drt � dobsð Þ * qera þ dobs * qobsð Þ=drt; (3)

where drt and dobs are the thickness of the model layer (20 hPa) and of the observed ISS sample, respectively.
The qera and qobs are the water vapor mixing ratio in ERA-Interim and aircraft observation in the correspond-
ing layer, respectively. The saturation vapor pressure over ice is determined following Murphy and Koop
[2005]. To avoid spurious dependency of calculated heating rates on the thickness of the model vertical layer
(which results from finite differencing in the radiation codes), the radiative effect on heating rates in equation
(2) is scaled by the ratio of drt and dobs:

REhtr ¼ htr xð Þ � htr yð Þj jupper þ� ��htr xð Þ � htr yð ÞjlowerÞ *
drt
dobs

: (4)

We compared different vertical resolutions (i.e., 5, 10, and 25 hPa) in RRTMG calculations, and the differences
are negligible.

Figure 1. Geographic distributions of the ISS samples. The imbedded plots show the length-weighted probability density functions (in %) of (a) RHi (%), (b) thickness
(m), (c) pressure (hPa), (d) excess water vapor content (EWV, g/m2), and (e) the preexisting ice water path (IWP, g/m2) in cloudy condition of the ISS samples in each
campaign. Numerical values in the figure legends show the length-weighted average values of each ISS characteristic for five flight campaigns.
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To specify the effective radius (Reff) of artificially formed ice crystals, we use the parameterization given by
Lohmann and Roeckner [1996]:

Reff ¼ R0* IWC=IWC0ð Þb; where R0 ¼ 83:8 μm; b ¼ 0:216; and IWC0 ¼ 1g=m3: (5)

We examined the uncertainty in our radiation calculation due to the uncertainty in Reff, by comparing the
results obtained using equation (5) to (1) the results obtained when perturbing Reff in equation (5) by 10%
while holding the total ice water content unchanged and (2) the results obtained from two different Reff para-
meterizations based on temperature [Ou and Liou, 1995] and ice water content at different latitudes [Liou
et al., 2008]. We found that the differences in the radiative effects calculated are generally within 10% under
cloudy condition but can be up to 17% for TOA fluxes, 27% for surface fluxes, and 22% for heating rates under
clear-sky condition (see Figure S4).

3.2. Two Types of Radiative Effects of ISS

We illustrate in Figure 2 the radiative effects of ISS under the two circumstances described above by using ISS
with multicampaign average properties (RHi, thickness, pressure, and EWV) described in section 2.2 and sum-
marize the results averaged from all samples in Table 1.

As shown in Figure 2, the EWV in the ISS layer traps outgoing longwave radiation and thus increases the net
downward flux at TOA. The EWV also slightly decreases the shortwave (and thus the net) downward radiation

Figure 2. Radiative impacts of ISS with multicampaign average properties (RHi, thickness, pressure, and EWV) on (left col-
umn) longwave, shortwave, net radiation flux, and (right column) heating rates. (a and b) With multicampaign average IWP
of 42 g/m2; (c and d) with IWP of 60 g/m2. The dashed and solid lines denote the radiative effects of removing the excess
water vapor (labeled as EWV) and replacing the EWV with cirrus clouds (labelled as cloud), respectively. The horizontal
dotted lines denote the vertical boundaries of the ISS layer.
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flux at the surface. There is a warming effect at the bottom of the ISS layer due to enhanced absorption of
surface emission by the EWV, while a cooling effect is seen at the top of the layer due to enhanced radiative
cooling there. The radiative effects of EWV with different preexisting IWP are similar. Note that the radiative
effects of neglecting the EWV are of the opposite signs compared to the results shown in Figure 2. In com-
parison, when the EWV is replaced by cirrus cloud, the radiative effects are much stronger because of the lar-
ger optical depth caused by ice particles compared to water vapor. When the preexisting IWP is large enough,
the impact on shortwave radiation will dominate and bring a cooling effect at TOA.

Figures 3a–3c show the radiative effects of removing the EWV in all the clear-sky and in-cloud samples from
the five campaigns. In general, when RHi increases, the magnitude of the radiative effect increases. It is
noticed that tropical samples in campaign PREDICT have a weaker effect compared to those in TORERO with
the same RHi. Over the North America, ISS samples in DC3 have smaller radiative effects than those in
START08. The reason lies in that at the same RHi, the samples in PREDICT and DC3 tend to have relatively
smaller thickness and less EWV content.

Our calculations show that neglecting the EWV, the net downward radiation at TOA can decrease up to 0.4W/
m2 in clear-sky conditions (obtained from a sample with a thickness of 1.24 km and RHi of 134%). This result is
comparable with that of Fusina et al. [2007], who calculated 0.8W/m2 effect from a relatively thick ISS layer
with 160% RHi and 1.2 km thickness. The average impacts on TOA radiation flux and heating rates are
�0.05W/m2 and 0.12 K/d in clear-sky conditions. At the surface, the average impact is generally less than
0.01W/m2, which is negligible and thus omitted from Table 1. In cloudy condition, the radiative effects of
the EWV are similar to those in clear-sky conditions.

In comparison, if the EWV were mistaken as cirrus clouds, the additional ice crystals would generate larger
radiative effects compared with water vapor (see Figure S5). The changes in TOA and surface net radiation
due to artificially formed clouds replacing the EWV in the clear-sky ISS samples are 54W/m2 and �7.7W/
m2 at maximum and 4.24W/m2 and �3.65W/m2 on average, respectively. The impacts on heating rates
are up to 16 K/d, average to 2.82 K/d through heating the bottom and cooling the top of the ISS layers.

In the in-cloud ISS samples in which ISS coexists with ice clouds, the radiation fluxes at TOA and the surface
change by up to 31.1W/m2 and�8.64W/m2, respectively; the heating rates change up to 13.2 K/d. All the in-
cloud ISS samples included, the average radiative impacts are 2.60W/m2 at TOA, �3.16W/m2 at the surface
and 1.41 K/d on heating rates, smaller than those of the clear-sky ISS samples. Interestingly, we find that the
radiative effects are dependent on the amount of preexisting ice in the ISS samples (see Figures 3j–3l). Two
transition thresholds are found when replacing EWV with artificially formed ice crystals, i.e., the preexisting
IWP values of 7 g/m2 and 53 g/m2. The radiative effect exhibits a maximum at ~7 g/m2 IWP, and at TOA it
becomes negative as preexisting IWP exceeds 53 g/m2 (with cloud visible optical depth being ~1.8). As illu-
strated in Figure 2, the change in sign in the TOA radiative effect (compare the black solid lines in Figures 2a
and 2c) is due the fact that to the reflected shortwave radiation becomes larger than the absorption of long-
wave radiation at higher IWP values. In 50 of the 890 in-cloud samples, artificially formed ice clouds have cool-
ing effects at TOA, with an average magnitude of�1.24W/m2. The few samples in HIPPO with lower IWP and
negative radiative effects at TOA are likely due to larger solar zenith angle and lower surface temperature.
Nevertheless, for the majority of the ISS samples, the impacts of the preexisting IWP are much larger than
other factors (see Figure S6).

Table 1. Radiative Effects of ISS on the TOA and Surface Net Radiation Fluxes (Units: W/m2) and on Heating Rates (HTR, Units: K/d)a

Campaign
fclear/
fcloudy

Neglecting EWV Replacing EWV With Cirrus Cloud
(Clear-Sky/In-cloud/Average) (Clear-Sky/In-cloud/Average)

TOA HTR TOA surface HTR

PREDICT 0.15/0.64 �0.02 �0.02 �0.02 0.14 0.06 0.06 1.33 0.57 0.56 �1.54 �0.58 �0.60 3.11 0.96 1.08
TORERO 0.27/0.47 �0.04 �0.04 �0.03 0.07 0.06 0.05 6.61 3.91 3.62 �2.44 �2.02 �1.61 3.56 1.91 1.86
DC3 0.10/0.72 �0.04 �0.07 �0.05 0.12 0.06 0.06 4.66 2.65 2.37 �2.24 �3.53 �2.77 3.53 1.49 1.43
START08 0.30/0.55 �0.09 �0.09 �0.08 0.07 0.05 005 11.55 6.77 7.19 �5.21 �6.59 �5.19 2.70 1.94 1.88
HIPPO 0.38/0.52 �0.10 �0.09 �0.09 0.10 0.07 0.07 5.92 3.77 4.21 �6.78 �5.24 �5.30 2.14 1.61 1.65
Multicampaign average 0.22/0.60 �0.05 �0.06 �0.05 0.12 0.06 0.06 4.24 2.60 2.49 �3.65 �3.16 �2.70 2.82 1.41 1.47

afclear (fin-cloud) is the fraction of clear-sky (in-cloud) ISS samples in terms of length.
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Figure 3. Two types of radiative effects on (left column) TOA net radiation, (middle column) surface net radiation, and (right column) heating rates. (a–c) The radiative
effect of excluding the EWV in clear-sky and cloudy condition. (d–i) The radiative effects of artificially formed clouds in clear-sky and cloudy condition. (j–l) The
radiative effects binned with respect to the ice water path (IWP) of the preexisting cirrus clouds. The grey and black lines represent IWP values of 7 g/m2 and 53 g/m2,
respectively, which are the thresholds for transitions in radiative effect of artificially formed clouds. Samples with radiative effect less than 1e-4W/m2 (or K/d) are
ignored in this figure. See Figure S1 for a simplified version of this figure.
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For each type of radiative effect of ISS (EWV is neglected or replaced by cirrus cloud), an average value in all-
sky conditions can be obtained by averaging over all the clear-sky, in-cloud ISS, and non-ISS samples. Here we
calculate this average radiative effect (REall - sky) as

REall-sky ¼ f clear*REclear þ f cloudy*REcloudy þ f nonISS*REnonISS; (6)

fclear, fcloudy, and fnonISS are the fractions in length of clear-sky ISS, in-cloud ISS, and non-ISS ice cloud samples
with respect to the total length of these three kinds of samples and REclear and REcloudy are the length-
weighted radiative effects of ISS in clear-sky and in-cloud conditions, respectively. Here REnonISS equals zero.
As shown in Table 1, the average radiative effects of neglecting the EWV are �0.05W/m2 on TOA radiation
flux, less than 0.01W/m2 on surface radiation, and 0.06 K/d on vertical heating rates. The radiative effects
of artificially formed cirrus clouds depend on the amount of preexisting ice, and on average these artificially
formed clouds lead to a warming effect of 2.49W/m2 at TOA, a cooling effect of�2.7W/m2 at the surface, and
a perturbation of 1.47 K/d in heating rates.

4. Conclusions and Discussions

In this study, the properties of ISS are investigated based on the in situ observed ISS data obtained from five
campaigns over North America, the Caribbean Sea, and the Central and Eastern Pacific Ocean. Using the
RRTMG model, we quantified the potential biases in radiation fluxes and heating rates when the observed
ISS is replaced by saturation conditions or artificially formed cirrus clouds.

Replacing EWV with cirrus clouds leads to more than 1 order of magnitude higher increases than simply
neglecting EWV. The effects of the artificially formed clouds on the TOA net radiation range from +0.56W/
m2 to +7.19W/m2, in addition to an average surface cooling effect of �2.7W/m2 and a 1.47 K/d change on
heating rates.

We find that although the radiative effects of ISS (both removing and replacing EWV) generally increase with
RHi, there is dependence on background IWP. For instance, when replacing the EWV by ice crystals, the
effects on TOA radiation change from a warming effect to a cooling effect as the preexisting IWP becomes
greater than about 53 g/m2, which corresponds to a visible optical depth of ~1.8. We note that the observa-
tions used in this study sampled both in situ and convectively formed cirrus clouds. Quantifications of the
radiative effects of ISS associated with different cloud origins, which can be determined using trajectory-
based method [e.g., Wernli et al., 2016], are suggested for future work.

Our results suggest that in numerical models, the parameterization of RHi thresholds of ice nucleation can
have large potential impacts on the net radiation at the TOA and surface, as well as in the vertical heating rate
profile. For example, had all the ISS that exists above certain ice nucleation thresholds been arbitrarily con-
verted into ice crystals, large biases would potentially be generated in the local radiative forcing. In addition,
our results show that the coexistence of ISS and ice crystals is important for correctly representing the mag-
nitude and signs of radiative forcing. As a previous observational analysis reported, the coexistence of ISS and
ice crystals contributes to ~10% of the lifetime during the evolution of cirrus clouds [Diao et al., 2013].
Whether such coexistence between ISS and ice crystals can be represented correctly in model simulations
has yet to be validated. The results from this work help to estimate the potential improvements in radiative
forcing that can be achieved if constraining the model simulations with in situ observations at various
geographical locations.
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