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Ice crystal formation and evolution in five campaign:  

START08, HIPPO Global, DC3, PREDICT and TORERO 
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•    Cirrus cloud and ice supersaturation 
Cirrus clouds have large but highly uncertain impacts on Earth’s climate [Chen et al. 

2000]. Cirrus cloud formation requires supersaturation of the relative humidity with 

respect to ice (RHi). However, it has not clear how ice crystal regions initiate from ice 

supersaturated regions (ISSRs, regions where RHi > 100%), grow in size and 

eventually dissipate. Here we show the time evolution of cirrus clouds by analyzing 

the relationship between ice crystal regions and ISSRs at temperature (T) ≤ - 40 °C. 
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ISSRs: regions with spatially continuous ISS.  

ICRs: regions with spatially continuous ice crystal distribution.  

“With ice crystals” as where the ice crystals are observed during the 1 Hz 

measurements, while the remaining regions are considered to be clear-sky 

regions. 

One ISSR+ICR sample: a set of spatially continuous ISSRs and ICRs.  
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1. Stratosphere-Troposphere Analyses 

of Regional Transport campaign (2008)  

2. HIAPER Pole-to-Pole Observations 

(HIPPO) Global campaign (2009-2011) 

3. PRE-Depression Investigation of 

Cloud-systems in the Tropics (PREDICT) 

campaign (2010) 

4. Deep Convective Clouds & Chemistry 

(DC3) campaign (2012) 

5. Tropical Ocean tRoposphere 

Exchange of Reactive halogen species 

and Oxygenated VOC (TORERO) 

campaign (2012) 

•Definitions of ice crystal regions (ICRs) and 

ice supersaturated regions (ISSRs) 
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Implications to understanding ice crystal evolution  
1. We provided a new and simple method to distinguish three phases of ice cloud 

evolution by using in-situ and quasi-Eulerian sampling of two common parameters: 

1) RHi 2) presence/absence of ice crystals.  

2. We demonstrated the importance of separating out various evolution phases of 

ice crystals in Eulerian view observation, since they have different properties of RHi, 

Nc and Dc. 

3. We compared ice crystal evolution between various geographical location and 

meteorological background. Our finding improves the understanding of the relative 

lifetime of ice crystal evolution.  

4. Our result facilitates the comparison between in situ Eulerian observation and 

Lagrangian view cloud simulation/ parameterization. 

Pha

-se 

Description Spatial ratio  

M =  

sum(LICR) / LISSR+ICR 

Spatial ratio  

N = sum(LISSR) / 

LISSR+ICR 

1 Clear-sky ISSRs 0 1 

2 Nucleation 0 < M < 1 1 

3 Early growth of ice crystals 0 < M < 1 0 < N < 1 

4 Later growth of ice crystals 1 0 < N ≤ 1 

5 Evaporation/sedimentation 1 0 

•Five phases of ice crystal region evolution 

[1] Mean diameter of ice crystals merges into a constant value as ice crystals grow, which 

agrees with the theory of ice crystal growth rate. 

[2] Number density of ice crystals continues to increase throughout the ICR evolution. The 

increasing Nc agrees with previous simulations, where new ice crystals continue to form 

as the air parcel continues to be uplifted [Spichtinger and Gierens, 2009]. 

𝑑𝐷𝑖𝑐𝑒

𝑑𝑡
=

1

𝐷𝑖𝑐𝑒
𝑆𝑣,𝑜𝑢𝑡 − 𝑆𝑣,𝑒𝑞 ∗ 𝐺𝑖(𝑇, 𝑃) 

Growth rate of a 

single ice crystal 

Rogers and Yau, 1989 and Straka, 2009 

Phase 1 Phase 2+3+4 Phase 5 

•Ice crystal number density (Nc) and  

mean diameter (Dc) evolution 

Ice crystal region lifetime phases and 

horizontal spatial expansion evolution 

[1] DC3 shows more Phase 4 (ICRs with ISS buried inside) than other campaigns, 

suggesting that either the ICRs do not consume H2O efficiently, or continued strong uplift 

maintained ISS inside ICRs in DC3. 

[2] PREDICT shows less Phase 2 (ISSRs with ICRs buried inside), suggesting that ICRs 

expand immediately once they are formed in ISSRs.  

[3] The peak of ICR/ISSR ratio happens at higher value in DC3 than the other two 

campaigns, suggesting that ICRs expand relatively fast in DC3 so that most ICRs are 

larger than ISSRs. This finding further indicates that the dominance of Phase 4 in DC3 is 

contributed by strong uplift instead of inefficient depositional growth. 
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•RHi mean and standard deviation evolution 

HIPPO Global 2009-2011 

DC3 2012 PREDICT 2010 TORERO 2012 

START08 2008 HIPPO Global 2009-2011 
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