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Abstract

In this article we present a high-performance computing framework for advanced flow sim-
ulation and its application to wind energy based on the residual-based variational multiscale
(RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and
accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on
the parallel implementation of the methodology and its scalability. Two challenging flow cases
were considered: the turbulent Taylor–Couette flow and the NREL 5MW offshore baseline wind
turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results
compare favorably with the reference data and near-perfect linear parallel scaling is achieved.

Keywords: wind turbine, RBVMS, turbulence modeling, isogeometric analysis, NURBS,
high-performance computing, parallel scalability

1. Introduction

The present costs for wind energy are dominated by the operations and maintenance of
the wind turbine system. It is shown in [1] that a typical wind turbine has averaged of 2.6
component failures per year during the first 10 years of operation. However, the industry is
currently unable to predict these failure mechanisms and the component failure leads to the
unscheduled downtime and reduced capacity. At the same time, offshore wind turbines are
receiving increased attention. Winds in the offshore environment are usually stronger and more
sustained, providing a more reliable source of energy. However, offshore wind turbines are
exposed to harsh environments and must be designed to withstand more severe loads than the
inland wind turbines. Rotor blades of much larger diameter (> 120 m) are being designed
and built for better performance. These are significant engineering challenges that must be
addressed through advanced research and development, which also involves advanced and large-
scale simulations.
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Due to the computational modeling challenges involved (and only recently developed inter-
est in the application), state-of-the-art in wind turbine simulation is not as advanced as in other
fields of engineering. In recent years, standalone fluid mechanics simulations of wind turbine
configurations were reported in [2–5], while standalone structural analyses of rotor blades under
assumed load conditions were reported in [6, 7]. Our recent work [8] has shown that coupled
fluid–structure interaction (FSI) modeling of wind turbines is important in order to accurately
predict their mechanical behavior. However, in order to perform fully-coupled FSI simulation
of wind turbines at full spatial scale, advanced high-performance computing (HPC) resources,
robust and accurate numerical methodology, and software with good parallel scalability are re-
quired. In this paper, we describe our computational procedures that enable efficient simulation
of wind turbine rotors at full scale.

This paper is outlined as follows. In Section 2, we introduce the Arbitrary Lagrangian–
Eulerian (ALE) form of the Navier–Stokes equations of incompressible flow suitable for moving
domain problems. We also present the residual-based variational multiscale (RBVMS) formu-
lation of the Navier–Stokes equations and turbulence modeling [9]. We review the basics and
state-of-the-art of Isogeometric Analysis [10]. In Section 3, we describe our parallel implemen-
tation strategy in detail. In Section 4, we present our simulation and parallel scalability results
for the turbulent Taylor–Couette flow and the NREL 5MW offshore baseline wind turbine rotor.
In Section 5, we draw conclusions.

2. Numerical methods

2.1. Navier–Stokes equations of incompressible flow in a moving domain
We begin by considering a weak formulation of the Navier–Stokes equations of incom-

pressible flow in a moving domain. Let Ω ⊂ R3 denote the fluid domain at the current time and
Γ = ∂Ω is its boundary. Let V andW be the infinite-dimensional trial solution and weighting
function spaces, respectively, and (·, ·)Ω denote the L2-inner product over Ω. The variational for-
mulation corresponding to the arbitrary Lagrangian–Eulerian (ALE) form is stated as follows:
find the velocity-pressure pair {v, p} ∈ V such that for all momentum and continuity weighting
functions {w, q} ∈ W,

B({w, q}, {v, p}) − (w, ρ f )Ω = 0, (1)

where

B({w, q}, {v, p}) =

(
w, ρ

∂v
∂t

)
Ω

+ (w, ρ(v − v̂) · ∇v)Ω + (q,∇ · v)Ω

− (∇ · w, p)Ω + (∇sw, 2µ∇sv)Ω . (2)

In the above equations, ρ is the density, v̂ is the fluid domain velocity, µ is the kinematic viscos-
ity, ∇s is the symmetric gradient operator, and the time derivative is taken with respect to a fixed
spatial coordinate in the reference configuration. In the absence of the fluid domain motion,
Eq. (2) reverts to a standard incompressible flow formulation in a stationary domain.
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2.2. Residual-based variational multiscale formulation in a moving domain
Replacing the infinite-dimensional spaces V andW with their finite-dimensional counter-

partsVh andWh leads to the Galerkin formulation, which is unstable for advection-dominated
flow and for the use of equal-order velocity–pressure discretization. In what follows, we present
a stable and accurate discrete formulation based on the variational multiscale (VMS) framework
(see, e.g. [11, 12]) that circumvents the aforementioned issues.

Let the superscript h denote the resolved coarse scales represented by the finite element
or isogeometric discretization. The trial solution and weighting function spaces are split into
coarse and fine scales as

{v, p} = {vh, ph} + {v′, p′}, (3)

{w, q} = {wh, qh} + {w′, q′}, (4)

where the primed quantities correspond to the unresolved scales that will be modeled in what
follows.

The above decomposition of the weighting functions leads to two variational subproblems:

B({wh, qh}, {vh, ph} + {v′, p′}) − (wh, ρ f )Ω = 0 ∀{wh, qh} ∈ Wh, (5)

B({w′, q′}, {vh, ph} + {v′, p′}) − (w′, ρ f )Ω = 0 ∀{w′, q′} ∈ W′, (6)

whereWh is the finite-dimensional space of finite element or isogeometric functions andW′ is
an infinite-dimensional space of the unresolved fine scales. The fine-scale velocity and pressure
are modeled as being proportional to the strong form of the Navier–Stokes partial differential
equation residuals [9]:

v′ = −τMrM({vh, ph}), (7)

p′ = −τCrC(vh), (8)

where

rM({v, p}) = ρ
∂v
∂t

+ ρ(v − v̂) · ∇v + ∇p − µ∇2v − ρ f , (9)

rC(v) = ∇ · v. (10)

In (7) and (8), τM and τC are the stabilization parameters originating from stabilized finite
element methods for fluid dynamics (see, e.g. [13–17]). Recently, they were interpreted as
appropriate approximations of the fine-scale Green’s function, which is a key mathematical
object in the VMS method (see [18] for an elaboration).

To generate the numerical method, v′ and p′ from Eqs. (7) and (8) are inserted directly into
the coarse-scale equation (5). The formulation is typically simplified based on the assump-
tions that the fine scales are orthogonal to the coarse scales with respect to the inner-product
generated by the viscous term, and the fine scales are quasi-static [9]. These lead to the fol-
lowing semi-discrete variational formulation: find {vh, ph} ∈ Vh, vh = g on Γg, such that
∀{wh, qh} ∈ Vh, wh = 0 on Γg,

B({wh, qh}, {vh, ph}) + BVMS({wh, qh}, {vh, ph}) − (wh, ρ f )Ω = 0, (11)
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where the modeled subgrid-scale terms in BVMS are

BVMS({w, q}, {v, p}) = (∇w, ρτMrM({v, p}) ⊗ (v − v̂))Ω

+ (∇q, τMrM({v, p}))Ω

+ (∇ · w, τCrC(v))Ω

− (w, ρτMrM({v, p}) · ∇v)Ω

− (∇w, ρτMrM({v, p}) ⊗ τMrM({v, p}))Ω , (12)

and the integrals are taken element-wise. We note that the quasi-static assumption on the fine
scales was generalized to moving domain problems in [19] such that the semi-discrete formula-
tion (11) globally conserves linear momentum.

The discrete formulation (11) derives from a VMS paradigm, which is viewed as a frame-
work for generating models of turbulence (see, e.g. [9, 20–25]). Equation (11) is known as
the residual-based variational multiscale (RBVMS) turbulence model [9]. Note that, in contrast
to classical turbulence modeling approaches, no ad hoc eddy viscosity terms are present in the
RBVMS formulation, which is one of its distinguishing features. Because the explicit use of
eddy viscosities is avoided, the present turbulence modeling approach is not likely to suffer from
the shortcomings of eddy-viscosity-based turbulence models for flows dominated by rotation in
the presence of curved boundaries (see [26, 27]). This fact also makes the current methodology
attractive for simulating wind turbine aerodynamics.

2.3. Isogeometric analysis
To discretize Eq. (11) in space we use isogeometric analysis, a new computational frame-

work that was first proposed in [10] and further detailed in [28]. Isogeometric analysis is based
on the technologies originating from computer graphics and computer-aided design (CAD). The
basic idea of the isogeometric concept is to use the same basis for design and computational
analysis. It can be thought of as a generalization of the finite element method and has similar
features such as variational framework, compactly supported basis functions and geometric flex-
ibility. However, isogeometric analysis has several advantages and offers new possibilities that
do not exist in standard finite elements. It has precise and efficient modeling of complex geom-
etry and smooth basis functions with degree of continuity beyond C0. Smooth basis functions
that are C1-continuous or higher can be directly employed to discretize higher-order differential
operators (see, e.g. [29–32]).

Non-uniform rational B-splines (NURBS) [33] were the first and currently the most de-
veloped basis function technology in isogeometric analysis. Mathematical theory of NURBS-
based isogeometric analysis was originally developed in [34] and further refinements and in-
sights into approximation properties of NURBS were studied in [35]. NURBS-based iso-
geometric analysis was applied with good success to the study of fluids [36–38], structures
[30, 31, 39–41] and fluid–structure interaction [42–45]. The RBVMS formulation (11), in con-
junction with NURBS-based isogeometric analysis, was employed in the simulation of sev-
eral important turbulent flows in [27, 46–48]. In most cases, isogeometric analysis gave an
advantage over standard low-order finite elements in terms of solution per-degree-of-freedom
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accuracy, which is in part attributable to the higher-order smoothness of the basis functions
employed.

Recent developments in isogeometric analysis include efficient quadrature rules [49], iso-
geometric model quality assessment and improvement [50–52], and T-Splines [53, 54]. It is
also shown in [55] that the existing finite element code can be converted to an isogeometric
analysis code without too many modifications by using the Bézier extraction operator. We note
that because conic sections and cylindrical shapes can be represented exactly using quadratic or
higher-order NURBS, they present an added benefit for computation of flows involving rotating
components [37], such as wind turbine rotors.

3. Parallel Implementation
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Figure 1: An example of the domain decomposition and parallel communications. (a) The computational domain
is partitioned into four subdomains and each subdomain is individually assigned to a processor (P). Black dots are
the control points shared by the subdomains. (b) The shared control points are designated to be “masters” (black
dots) or “slaves” (white dots) in each subdomain. The arrows indicate the correspondence between the master and
slave control points. (c) Communication stages (S) and tasks (T) for this example.
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Figure 2: Illustration of parallelization procedures for (a) periodic boundaries, including (b) boundaries with rota-
tional periodicity. Here R(θ) is the rotation matrix for the rotationally periodic boundary conditions.

Turbulent flows, especially in the regime of large eddy simulation (LES), require substan-
tial grid resolution for accuracy. Parallel computing is thus essential to efficiently compute
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turbulence. Although several references present applications of isogeometric analysis to turbu-
lent flow, no discussion is given with regard to parallel implementation employed and parallel
performance achieved by NURBS discretizations. For this reason, here, for the first time, we
describe our parallel implementation of isogeometric analysis that allows us to achieve strong
scalability on massively parallel computers.

There are mainly two stages that are involved in the computational work for standard fi-
nite elements or isogeometric analysis. The first stage consists of numerical integration over
the elements and formation of the equation system (i.e. assembly of the left-hand-side tangent
matrix and right-hand-side residual vector). The second stage consists of solving the linear sys-
tem of equations using an iterative method. In this work we employ the Generalized Minimum
Residual (GMRES) method [56].

Our parallel implementation makes use of the Message Passing Interface (MPI) libraries
and is adapted from [57]. We use the non-overlapping element-based partitioning of the com-
putational domain. The domain is partitioned into subdomains with similar work load as a
preprocessing step, and each subdomain is individually assigned to a processor (or core). As a
result, each element is uniquely assigned to a single partition and the assembly stage is highly
scalable, both in terms of speed and memory.

However, element-based partitioning leads to shared control points1 at the inter-processor
boundaries. Figure 1a shows a computational domain that is partitioned into four subdomains.
Black dots are the control points shared by the subdomains, while the rest of the control points
reside solely in their subdomains and are not shared. Typically, a good balance of elements with
sufficient work load in each partition and a minimum amount of communication between the
partitions result in a reasonable control-point balance as well. This also helps maintain good
scalability in solving the resultant linear system of equations using an iterative solver.

Each subdomain will generally have shared control points requiring inter-processor commu-
nication, as shown in Figure 1b. The shared control points are the points that reside on different
partitions that originally referred to the same global control point number in the non-partitioned
domain. In a set of control points that referred to the same global control point number, only
one is designated to be a “master” and the rest are “slaves”. Figure 1b shows an example where
the black dots are the master control points and the white dots are the slave control points. The
arrows indicate the correspondence between the master and slave control points.

Every partition contains information about its portion of the work and its interaction with
neighboring partitions. The interaction between neighboring partitions is defined based on
shared control points. The design is such that only the master control point will be in charge of
data accumulation and update. As a result, the communications will only exist between master
and slave control points. No communications are needed between slave control points.

The process of communicating the information to and from the master control points is de-
composed into so-called communication stages. Each stage involves several communication
tasks, which are one-to-one communications between two unique processors. During a com-
munication task the data for the shared control points on a given processor is packaged into a

1Control points in isogeometric analysis are analogs of nodes in standard finite elements. In isogeometric
analysis the degrees of freedom reside on control points and are referred to as control variables [10].
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single array (using MPI derived data types) and sent (or received) as a single message. Figure 1c
illustrates the communication stages and tasks for the example shown. Note that no communi-
cation will take place between processors 2 and 3, because the share control point is designated
to be a slave on these processors. The master–slave relationships and the communication stages
and tasks are defined in the pre-processing step.

The master–slave framework is also well suited for handling periodic boundaries (see Fig-
ure 2a). For rotationally periodic boundary conditions, in addition to defining the necessary
inter-processor communication structures, further operations are needed and are discussed in
what follows.

There are two major types of communications. The first type is where the data is accumu-
lated at the master control points from their slave control points to obtain a “complete value”. A
control point is said to have a complete value if it has the same value in the partitioned case as
in the unpartitioned case [58]. For example, after numerical integration on each local partition,
non-shared control points will have complete values in the right-hand-side vector. However, val-
ues for shared control points are incomplete on each subdomain because their contributions are
distributed among the partitions that shares the same control point. Communications between
processors are needed in this situation. Slave control points will send and add their incomplete
values to the corresponding master control points. After finishing all the communication stages,
the master control points have complete values, while the slave control points are assigned zero
values for the right-hand-side vector.

The second type of the communication is where the complete values are copied from the
masters to update their slave control points. For example, after solving the linear system, the
master control points have complete updated value of the solutions. Communications will then
take place to send back these solutions from the master control points to their corresponding
slave control points. As a result, the slave control points will also have the complete value of
the solutions.

For rotationally periodic boundaries the complete value of the right-hand-side vector is ob-
tained by first rotating the linear momentum residual at the slave control points to the correct
coordinate system, and then sending and adding the contributions to the master control points.
Likewise, when the value of the velocity vector is computed on the master control points, it is
first rotated back and then sent to the slave control points. In order to rotate the right-hand-side
and solution vectors, we construct an appropriate rotation matrix at the rotationally periodic
control points. Figure 2b illustrates this case. Note that no rotation is necessary to communi-
cate the scalar pressure variable or the continuity equation residual at the rotationally periodic
boundaries.

To solve the linear system using GMRES, only the product of the left-hand-side matrix with
a right-hand-side vector is needed. To efficiently compute this product in parallel, a vector,
which is assembled at the processor level and communicated globally, is multiplied against a
local-to-the-processor assembled matrix in parallel. To assess convergence and decide whether
to continue with the iteration process or update the solution, a new communication is performed.

Note that for a fixed-size problem partitioned into large number of subdomains, the number
of elements per partition becomes relatively small. This may result in significant imbalance
of control points since the control point balance is not explicitly requested in the procedure.
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Furthermore, the percentage of shared control points increases and communication stages and
tasks may also increase. All these may eventually becomes detrimental to scaling.

4. Computational results

4.1. Turbulent Taylor–Couette flow at Re = 8000
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Figure 3: Turbulent Taylor–Couette flow: (a) Isosurfaces of Q colored by flow speed. (b) Mean angular momentum
compared with the DNS result of Dong [59].
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Figure 4: Scalability study for turbulent Taylor–Couette flow simulation. The computation time is normalized by
the result of 64-processor case.

8



A turbulent Taylor–Couette flow at Re = 8000 is simulated on a mesh consisting of 256 ×
64 × 128 quadratic NURBS elements in the azimuthal, radial and axial directions, respectively.
The problem setup is same as the one reported in [27]. A uniform mesh is used in the azimuthal
and axial directions. In the radial direction, a hyperbolic tangent mesh stretching is used to
better capture the boundary-layer turbulence. No-slip boundary conditions are imposed weakly
using the methodology presented in [36, 47].

Figure 3a shows the isosurfaces of a scalar quantity Q, which is designed to be an objective
quantity for identifying vortical features in the turbulent flow (see, e.g. [60]). The figure illus-
trates the complexity of the turbulent flow and the high demand on the numerical method to
adequately represent it. Figure 3b shows the flow statistics of mean angular momentum, where
the curve lies on top of the DNS result reported by Dong [59]. This is not surprising because
very good accuracy for the same test case was achieved in our computations in [19, 27], but
on meshes that are significantly coarser than the one used here. Such a fine NURBS mesh
was chosen purely in the interest of performing a meaningful parallel scalability study of our
isogeometric turbulence code.

The parallel scalability tests were carried out on Ranger, a Sun Constellation Linux Cluster
at the Texas Advanced Computing Center (TACC) [61]. The Ranger system is comprised of
3936 16-way SMP compute nodes providing 15744 AMD OpteronTM processors for a total of
62976 compute cores, 123 TB of total memory and 1.7 PB of raw global disk space. It has
a theoretical peak performance of 579 TFLOPS. All Ranger nodes are interconnected using
InfiniBand technology in a full-CLOS topology providing a 1GB/sec point-to-point bandwidth
[62].

The 256 × 64× 128 quadratic NURBS mesh, which consists of nearly 2.1 million quadratic
elements and about the same number of control points (analogues of nodes in finite elements),
is decomposed into 64, 128, 256, 512 and 1024 subdomains and each subdomain is assigned to
a processor. In the axial and radial directions the mesh is decomposed into 8 and 4 partitions,
respectively, for all cases. In the azimuthal direction the mesh is decomposed into 2, 4, 8,
16 or 32 partitions. C1-continuity at the inter-processor boundaries is maintained by imposing
appropriate linear constraints on the velocity and pressure control variables. The scalability test
results are shown in Figure 4. The code exhibits perfect linear scaling for the cases of 64, 128
and 256 processors. Near-perfect strong scaling is achieved for the 512- and 1024-processor
cases.

4.2. 5MW offshore wind turbine simulation
We use a template-based NURBS geometry modeling approach to construct the computa-

tional domain of the NREL 5MW offshore baseline wind turbine rotor [8, 19, 63]. The rotor
blade surface is composed of a collection of airfoil shapes stacked along the blade axis. The
blade and the airfoil cross-sections that define it is shown in Figure 5a. We compute the aero-
dynamics of the wind turbine rotor using the ALE approach on a rotating mesh.

The problem setup is shown in Figures 5b. The rotor radius is 63 m and the prescribed rotor
speed is 1.267 rad/s. The blade is assumed to be rigid. At the inflow boundary the wind speed is
set to 11.4 m/s, at the outflow boundary the stress vector is set to zero, and at the radial boundary
the radial component of the velocity is set to zero. The air density and viscosity are 1.2 kg/m3
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(a) (b)

Figure 5: Wind turbine simulation: (a) Constructed blade and airfoil cross-sections that define it. (b) Problem
setup with prescribed inflow wind velocity and rotor speed.

Figure 6: A planar cut of the volumetric NURBS mesh of the computational domain to illustrate the mesh res-
olution. The mesh is clustered toward the rotor blade. For the purpose of visualization, each quadratic NURBS
element is interpolated with 2 × 2 × 2 bilinear elements.

and 2.0 × 10−5 kg/(m·s), respectively. To enhance the efficiency of the simulations, we take
advantage of the problem symmetry. We construct a 120◦ slice of the computational domain
and impose rotationally periodic boundary conditions [19, 64, 65]. The mesh of the 120◦ slice of
the domain is comprised of 1449000 quadratic NURBS elements, which yields about the same
number of mesh control points. Figure 6 shows a planar cut of the volumetric NURBS mesh of
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(a) (b)

Figure 7: 2D blade cross-sections at (a) 0.6R and (b) 0.75R to illustrate the boundary layer mesh used in our
computation. R = 63 m is the radius of the rotor.

Figure 8: Isosurfaces of air speed at an instant in the wind turbine simulation. The flow exhibits complex behavior.
The vortical feature generated at the blade tip is convected downstream of the rotor with very little decay.

the computational domain to illustrate the mesh resolution. The mesh is clustered toward the
rotor blade. Figure 7 shows 2D blade cross-sections at 0.6R and 0.75R, where R is the rotor
radius, to illustrate the boundary layer mesh used in our computation. Near the blade surface,
the size of the first element in the wall-normal direction is about 2 cm.

Isosurfaces of the air speed at a time instant is shown in Figure 8. The vortex forming at
the tip of the blades is convected downstream of the rotor with little decay, which is attributable
to the use of NURBS functions. We note that the problem setup and mesh of this test case are
identical to those reported in [8], where a fully-coupled FSI simulation was performed. Figure 9
presents a comparison of the trailing-edge turbulence for rigid and flexible blade cases. Note the
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(a) (b)

Figure 9: Isosurfaces of air speed zoomed in on the wind turbine rotor blade tip. Comparison of the trailing-edge
turbulence for (a) rigid and (b) flexible blade cases.
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Figure 10: Time history of the aerodynamic torque. Both rigid and flexible rotor results are plotted. The reference
result reported by Jonkman et al. [63] is also shown for comparison.

significant differences in the turbulence structures, which seem to be more fine-grained in the
case of the rigid blade. Also note the presence of elongated streak-like flow structures coming
off the trailing edge of the rigid blade, which are not present in the case of the flexible blade.
It appears that the rotor structural deformation is influencing the generation of turbulence, and
the effect is more pronounced near the blade tip where the relative air speed is higher than near
the hub. The observed differences in the flow structures between the rigid and flexible blade
cases suggest that FSI modeling may be important for accurate prediction of aerodynamically-
generated noise.

The time history of the aerodynamic torque (for a single blade) is plotted in Figure 10 for
both rigid and flexible blade simulations. Both cases compare favorably to the data reported
in [63] obtained using FAST [66], which is the gold standard in the wind turbine aerodynamics
simulation. Computational modeling in FAST makes use of look-up tables to obtain steady-
state lift and drag data for airfoil cross-sections and incorporates empirical modeling to account
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Figure 11: Scalability study for wind turbine rotor simulation. The computation time is normalized by the result
of 60-processor case.

for complex effects such as trailing-edge turbulence. Nevertheless, we feel that the value of
aerodynamic torque reported in [63] is close to what it is in reality, given the vast experience of
NREL with wind turbine rotor simulations employing FAST. In our simulations we are able to
capture this important quantity of interest using the proposed procedures, which do not rely on
empiricism and are 100% predictive.

Note that the aerodynamic torque for the flexible blade exhibits low-magnitude high-
frequency oscillations, while the rigid blade torque is smooth (see Figure 10). This is due
to the twisting motion of the wind turbine blade about its axis as examined in [8]. The blade
twist angle undergoes high frequency oscillations, which are driven by the trailing-edge vortex
shedding and turbulence. Local oscillations of the twist angle lead to the temporal fluctuations
in the aerodynamic torque.

As in the case of the Taylor–Couette flow, we assess the scalability of our aerodynamics
code (without FSI) on the wind turbine simulation. The wind turbine mesh is decomposed into
60, 120, 240 and 480 subdomains. Five and six partitions were created in the downstream and
radial directions, respectively, for all cases. In the azimuthal direction the mesh is decomposed
into 2, 4, 8 or 16 partitions. The scalability test results are shown in Figure 11. Near-perfect
linear scaling is likewise achieved.

5. Conclusions

This paper presents a computational framework for advanced flow simulation that is based
on the RBVMS turbulence modeling and isogeometric analysis. Particular emphasis is placed
on the parallel implementation of the methodology and scalability results. Near-perfect linear
parallel scaling is shown on two challenging flow cases: the turbulent Taylor–Couette flow and
the NREL 5MW offshore baseline wind turbine rotor at full scale. For wind turbine simulation
the results of aerodynamic torque, a key quantity in evaluating the wind turbine performance,
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were in close agreement with those reported in [63]. This suggests that 3D, complex-geometry,
time-dependent computational modeling of wind turbine rotors, which is fully predictive and
does not rely on empiricism, is capable of accurately approximating the aerodynamic quantities
of interest while keeping the number of degrees of freedom at a manageable level.

Recent advances in HPC and hardware design enable turbulence simulations with much
finer grid resolution. Nowadays, in order to have confidence in the computational results for
turbulent flows, several levels of mesh refinement are employed to achieve grid independence
in the predicted quantities of interest (e.g. lift, drag, torque, turbulent kinetic energy, etc.). In
the RBVMS method, the same discrete formulation is employed at all levels of mesh resolution.
This is in contrast to standard turbulence modeling approaches, which use different turbulence
models (of RANS, LES or DNS variety) depending on mesh resolution. As a result, in the
RBVMS framework, one is not faced with the difficulties of selecting an appropriate turbulence
model for a given level of mesh resolution, or trying to couple different turbulence models in
different parts of the computational domain. This makes our methodology advantageous for
large-scale simulations of turbulent flow that rely on mesh refinement to produce converged
flow statistics and other quantities of interest.
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[54] M.R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by local h-
refinement with T-splines. Computer Methods in Applied Mechanics and Engineering,
199:264–275, 2010.

[55] M.J. Borden, M.A. Scott, J.A. Evans, and T.J.R. Hughes. Isogeometric finite element data
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