Aerodynamic Simulation of Vertical-Axis Wind Turbines

A. Korobenko, University of California, San Diego
Ming-Chen Hsu, University of Texas-Austin
I. Akkerman, Durham University
Y. Bazilevs, University of California, San Diego

Available at: https://works.bepress.com/ming-chen_hsu/1/
Aerodynamic Simulation of Vertical-Axis Wind Turbines

Full-scale, 3D, time-dependent aerodynamics modeling and simulation of a Darrieus-type vertical-axis wind turbine (VAWT) is presented. The simulations are performed using a moving-domain finite-element-based ALE-VMS technique augmented with a sliding-interface formulation to handle the rotor-stator interactions present. We simulate a single VAWT using a sequence of meshes with increased resolution to assess the computational requirements for this class of problems. The computational results are in good agreement with experimental data. We also perform a computation of two side-by-side counterrotating VAWTs to illustrate how the ALE-VMS technique may be used for the simulation of multiple turbines placed in arrays. [DOI: 10.1115/1.4024415]

1 Introduction

During the last several decades engineers and scientists put significant effort into developing reliable and efficient wind turbines. Since the 1970s most of the work focused on the development of horizontal-axis wind turbines (HAWTs). Vertical-axis wind turbines (VAWTs) were generally considered as a promising alternative to HAWTs. Before the mid-1990s VAWTs were economically competitive with HAWTs for the same rated power. However, as the market demands for electric power grew, VAWTs were found to be less efficient than HAWTs for large-scale power production. As wind energy technologies matured, VAWTs recently resurfaced as a good source of small-scale electric power for urban areas. The main reason for this is their compact design. The gearbox and drive train components are located on the ground, which allows easier access, installation, maintenance, and repair. Another advantage is VAWTs can respond to the wind coming from any direction, which obviates the need to include expensive yaw control mechanisms in their design. The disadvantages of VAWTs include their relatively low efficiency compared to HAWTs and issues related to self-starting. The ability to self-start depends on the wind conditions and necessitates the use of an additional starting system as part of the VAWT design.

There are two main configurations of VAWTs: The Savonius and Darrieus rotor types [1]. The former is a drag-type turbine, where the power is generated using momentum transfer. In contrast to the Savonius configuration, the Darrieus configuration is a lift-driven turbine: The power is produced from the aerodynamic torque acting on the rotor. The efficiency of Darrieus-type turbines is significantly higher than that of the Savonius-type, and it is for this reason we focus on Darrieus-type turbines in this work.

Aerodynamic simulation of VAWTs, in our opinion, is more challenging than that of HAWTs for the following reasons. In the case of VAWTs, even under steady wind and rotor speeds, the flow angle-of-attack is constantly changing. For most cases of interest these changes are significant, and the flow constantly transitions from fully attached to separated. As a result, even under steady operating conditions, this creates truly unsteady turbulent aerodynamics. High-fidelity modeling of the underlying aerodynamics requires a numerical formulation that properly accounts for this flow unsteadiness and is valid for all flow regimes present. It is precisely this unsteady nature of the flow that creates significant challenges for the application of low-fidelity methods and tools (such as, for example, the FAST code [2]) to VAWTs. Another challenge is to represent how the turbulent flow features generated by the upstream blades affect the aerodynamics of the downstream blades [3]. The VAWT simulation complexity is further increased when several VAWTs are operating in close proximity to one another. Due to their compact design, VAWTs are often placed in arrays with spacing that is a little over one diameter between the turbine towers. In Ref. [4], this type of placement was found beneficial for increased energy production.

The above challenges are addressed in this work. The aerodynamics of VAWTs is simulated using a finite-element-based ALE-VMS technique. ALE-VMS [5,6] was successfully employed for the aerodynamics simulation of HAWTs in Refs. [7–10], and fluid–structure interaction (FSI) simulation of HAWTs in Refs. [11–14]. The sliding interface formulation employed in conjunction with the ALE-VMS technique enables the simulation of the interaction between the spinning rotor and stationary tower, as well as the simulation of multiple wind turbines and interaction between them. The sliding interface formulation was developed in Ref. [15] and used in the computation of HAWTs in Ref. [9], including FSI coupling in Ref. [13]. In addition, for improved boundary-layer accuracy, a key ingredient employed in the ALE-VMS simulation of wind-turbine aerodynamics and FSI is the weakly enforced no-slip boundary conditions [16–18] set on the moving blade surfaces.

In this article, the techniques we previously developed for HAWTs are directly applied to the simulation of VAWTs. The main goals of this paper are to illustrate the capability and assess the accuracy and computational costs of the techniques for this new challenging class of problems. We note that recently a few articles were published on 2D and 3D modeling and simulation of VAWTs [19–22]. However, rather than solving the time-dependent problem, a quasi-static representation of the air flow was employed in Ref. [22]. Furthermore, only a single VAWT was simulated in the articles cited.

The paper is outlined as follows. In Sec. 2 we present the governing equations of aerodynamics, including compatibility conditions at the sliding interface between the moving and stationary domains. In Sec. 3 we show the computations of a small-scale Darrieus-type wind turbine. For the simulations presented the
wind turbine geometry and wind tunnel test data were taken from Refs. [22,23]. We simulate two cases: a single turbine, and two counterrotating turbines placed side-by-side in close proximity to one another. For a single turbine we perform a mesh refinement study, and compare the results to experimental data. In Sec. 4 we draw conclusions and highlight future research directions.

2 Methods for Modeling and Simulation of VAWT Aerodynamics

The VAWT aerodynamics is governed by the Navier–Stokes equations of incompressible flows. The incompressible-flow assumption is valid for our application due to low values of the Mach number in these flows. The Navier–Stokes equations in the arbitrary Lagrangian–Eulerian (ALE) frame [24] can be written as follows:

\[
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} - \mathbf{u}_e) \cdot \nabla \mathbf{u} - \mathbf{f} \right) - \nabla \cdot \mathbf{\sigma} = 0
\]

where \(\rho \) is the density, \(\mathbf{f} \) is the external force per unit mass, \(\mathbf{u} \) and \(\mathbf{u}_e \) are velocities of the fluid and fluid domain, respectively. The stress tensor \(\mathbf{\sigma} \) is defined as

\[
\mathbf{\sigma}(\mathbf{u}, p) = -\rho \mathbf{I} + 2\mu \mathbf{\varepsilon}(\mathbf{u})
\]

where \(p \) is the pressure, \(\mathbf{I} \) is the identity tensor, \(\mu \) is the dynamic viscosity, and \(\mathbf{\varepsilon}(\mathbf{u}) \) is the strain-rate tensor given by

\[
\mathbf{\varepsilon}(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) - \frac{2}{3} \rho \mathbf{u} \nabla \rho
\]

In Eq. (1), \(\frac{\partial}{\partial t} \) denotes the time derivative taken with respect to a fixed referential domain spatial coordinates \(\mathbf{x} \). The spatial derivatives in the above equations are taken with respect to the spatial coordinates \(\mathbf{x} \) of the current configuration.

To model a single VAWT, we decompose the problem domain into two subdomains: a rotating cylindrical domain that encloses the rotor and a stationary domain that contains a portion of the tower below the rotor and all the inlet, outlet, and lateral boundaries. As the rotor spins, the cylindrical domain rotates with it, which creates a sliding interface between the two subdomains. The compatibility conditions enforced at the sliding interface are

\[
\mathbf{u}_M - \mathbf{u}_S = 0
\]

\[
(-p_M \mathbf{I} + 2\mu \mathbf{\varepsilon}(\mathbf{u}_M))\mathbf{n}_M + (-p_S \mathbf{I} + 2\mu \mathbf{\varepsilon}(\mathbf{u}_S))\mathbf{n}_S = 0
\]

where all quantities with subscripts “S” and “M” refer to the stationary and moving subdomains, respectively (see Fig. 1), and \(\mathbf{n}_M \) and \(\mathbf{n}_S \) are the unit outward normal vectors. In the case of multiple VAWTs, each rotor is enclosed by its spinning cylindrical subdomain, and multiple sliding interfaces are present in the computation where the compatibility conditions given by Eqs. (5) and (6) are enforced. The discrete formulation is obtained using the ALE-VMS method with weakly enforced boundary conditions and the appropriate numerical treatment of the sliding interface [25] for the details of the methods). Low-order FEM is used for spatial discretization, and the generalized-\(\alpha \) method [26–28] is employed to advance the ALE-VMS equations in time.

Remark. We note that rotation is handled with the ALE technique rather than using the Navier–Stokes equations written in the rotating reference frame. We favor using ALE (or other moving-domain techniques, such as space–time methods [29–37]) for this class of problems because it naturally leads to a kinematically consistent treatment of rotor-stator interaction.

Remark. We note that in application of the FEM to flows with moving mechanical components, the shear–slip mesh update method [38–40] and its more general versions [41,42] may also be used to handle objects in relative motion.

3 Computational Results

The aerodynamics simulations are performed for a three-blade, high-solidity VAWT with the rated power of 3.5 kW. The prototype is a Darrieus H-type turbine designed by Cleanfield Energy Corporation. Full-scale tests for this turbine were conducted in the National Research Council (NRC) low-speed wind tunnel at McMaster University. Experimental studies for this turbine focused on the application of VAWTs in urban areas [23].

The turbine has a tower height of 7 m. The blades, 3 m in height, are connected to the tower by the struts of length 1.25 m. This value is taken as the rotor radius. A symmetric NACA0015 airfoil profile with chord length of 0.4 m is employed along the entire length of the blades. See Fig. 1 for an illustration.

The computations were carried out for constant inflow wind speed of 10 m/s and constant rotor speed of 115 rpm. This setup corresponds to the tip speed ratio of 1.5, which gave maximum rotor power as reported in Refs. [22,23]. However, it was also reported for the wind tunnel tests that the control mechanism employed was able to maintain an average rotor speed of 115 rpm with the deviation of \(\pm 2.5 \) rpm. This means the actual rotor speed was never constant.

The air density and viscosity are set to 1.23 kg/m\(^3\) and 1.78 \(\times \) 10\(^{-5}\) kg/(m\(\cdot\)s), respectively. On the inflow, the wind speed of 10 m/s is prescribed. On the top, bottom, and side surfaces of the stationary domain no-penetration boundary conditions are prescribed, while a zero traction boundary condition is set on the outflow. No-slip boundary conditions are imposed weakly on the rotor blades and tower. The struts are not modeled in this work to reduce computational cost. The struts are not expected to significantly influence the results for this VAWT design.

The computations were carried out in a parallel computing environment. The meshes, which consist of linear triangular prisms in the boundary layers and linear tetrahedra elsewhere, are partitioned into subdomains using METIS software [43], and each subdomain is assigned to a compute core. The parallel implementation of the methodology may be found in Ref. [8]. The time step is set to 1.0 \(\times \) 10\(^{-5}\) s for all cases.

3.1 Single Turbine Simulation. We first compute a single VAWT and assess the resolution demands for this class of
problems. The stationary domain has the outer dimensions of 50 m, 20 m, and 30 m in the streamwise, vertical, and spanwise directions, respectively. The VAWT centerline is located 15 m from the inflow and side boundaries. The radius and height of the spinning cylinder are both 4 m.

Three meshes are used with increasing levels of refinement. The overall mesh statistics are summarized in Table 1. The finest mesh has over 17 million elements. The details of the boundary-layer discretization are as follows. For mesh 1, the size of the first element in the wall-normal direction is 0.667 mm, and 15 layers of prismatic elements were generated with a growth ratio of 1.15. For mesh 2, the size of the first element in the wall-normal direction is 0.470 mm, and 21 layers of prismatic elements were generated with a growth ratio of 1.1. For mesh 3, the size of the first element in the wall-normal direction is 0.333 mm, and 30 layers of prismatic elements were generated with a growth ratio of 1.05.

Figure 2 shows a 2D slice of mesh 2, focusing on the boundary-layer discretization of the blade.

Time history of the computed aerodynamic torque is plotted in Fig. 3 together with the experimental value reported for these operating conditions. Only the mean value of the torque was reported in Refs. [22, 23]. Note that after a couple of cycles a nearly periodic solution is attained. Mesh 1 predicts the average torque of about 52 Nm, mesh 2 gives the average torque of about 70 Nm, and mesh 3 predicts the average torque of about 80 Nm, while the targeted experimental value is about 90 Nm. Looking further at the curves we observe that the largest differences between the predicted values of the torque between the meshes occur at the maxima and minima of the curves. Also note that the torque fluctuation during the cycle is nearly 200 Nm, which is over twice the average. One way to mitigate such high torque variations is to allow variable rotor speed.

Figure 4 shows a snapshot of vorticity colored by flow speed. The upstream blade generates tip vortices near its top and bottom.

Table 1

<table>
<thead>
<tr>
<th>Mesh</th>
<th>Number of nodes</th>
<th>Number of elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh 1</td>
<td>1,143,609</td>
<td>4,064,358</td>
</tr>
<tr>
<td>Mesh 2</td>
<td>2,478,993</td>
<td>7,324,964</td>
</tr>
<tr>
<td>Mesh 3</td>
<td>6,401,238</td>
<td>17,434,372</td>
</tr>
</tbody>
</table>
sections. Note that no large vortices are present in the middle section of the blade. There, as the flow separates on the airfoil surface, larger vortices immediately break up into fine-grained trailing-edge turbulence. The tip vortex and trailing-edge turbulence are then convected with the ambient wind velocity, and impact the tower, as well as the blade that happens to be in the downwind position in the spin cycle. However, as it is evident from the torque time histories shown in Fig. 3, these do not produce a major impact on the rotor loads, at least for a chosen set of wind and rotor speeds. The situation may, of course, change for a different set of operating conditions.

3.2 Multiple Turbine Simulation. Here we investigate two counterrotating turbines placed side-by-side in close proximity to one another. The wind and rotor speeds are the same as before, however, the turbines rotate out of phase, with the difference of 60 deg. The distance between the towers of the two turbines is $2.64R$, where $R = 1.25$ m is the rotor radius. This distance between the turbines falls in the range investigated in the experimental work of Ref. [4].

The stationary domain has the outer dimensions of 50 m, 20 m, and 33.3 m in the streamwise, vertical, and spanwise directions, respectively. The centerline of each VAWT is located 15 m from the inflow and 15 m from its closest side boundary. The radius and height of the spinning cylinders are 1.45 m and 4 m, respectively.

A 2D slice of the computational-domain mesh focusing on the two rotors is shown in Fig. 5. The boundary layer discretization employed for this computation is the same as that of mesh 2 in the Sec. 3.1.

Figure 6 shows the time history of the aerodynamic torque for the two-turbine case. The curve corresponding to the second turbine is shifted by 60 deg such that both curves are in phase. The time history of the torque for a single VAWT simulation is shown for comparison. Note that while the maxima of all curves are virtually coincident, the minima are lower for the case of multiple turbines. Also note that the multiple-turbine torque curves exhibit some fluctuation near their minima, while the single-turbine torque curve is smooth near its minima. This is likely due to the fact that the blade from one turbine, as it approaches the plane defined by the centerlines of the two towers, encounters the wake of the blade from another turbine. This, in turn, produces higher drag on that blade and results in reduction of the aerodynamic torque. A snapshot of vorticity colored by flow speed depicted in Fig. 7 shows that the short distance between the turbines has a noticeable effect on the resulting aerodynamics. This effect may be seen...
more clearly in Fig. 8, which shows that one of the blades from the VAWT on the right is about to enter the turbulent region between the turbines.

4 Conclusions and Future Work

In this study we applied the previously developed ALE-VMS technique, in conjunction with weakly enforced boundary conditions and the sliding-interface formulation, to simulate VAWTs at full scale. A Darrieus H-type turbine was chosen as a prototype due to its relatively simple geometry as well as availability of wind tunnel test data. The inherently unsteady and turbulent nature of the flow necessitates the use of finer grids for good prediction of the aerodynamic rotor loads. A simulation of two side-by-side wind turbines was also performed. We found that the counter-rotating, out-of-phase configuration produces a slight drop in the predicted aerodynamic torque.

In the future we plan to first approximate the rotor as a rigid object and perform coupled aerodynamic-rigid-object interaction simulations to investigate issues associated with VAWT self-starting. We also plan to include fluid-structure coupling in the modeling. The FSI issues in VAWTs are different than in HAWTs starting. We also plan to include fluid-structure coupling in the simulations to investigate issues associated with VAWT self-starting. Finally, we would like to simulate small arrays of VAWTs to better understand wake effects and optimal positioning of turbines.

Acknowledgment

This work was supported through the National Science Foundation CAREER Award No. 1055091. The computational resources of the Texas Advanced Computing Center (TACC) were employed for the simulations reported in this work. This support is gratefully acknowledged.

References

Fig. 8 Air speed at a 2D cross section for the two-VAWT case

