January 1, 2006

Measurement of two- and three-nucleon short-range correlation probabilities in nuclei

KS Egiyan
NB Dashyan
MM Sargsian
MI Strikman
LB Weinstein, et al.

Available at: http://works.bepress.com/michael_williams/99/
Measurement of Two- and Three-Nucleon Short-Range Correlation Probabilities in Nuclei

(CLAS Collaboration)

1Yerevan Physics Institute, Yerevan 375036, Armenia
2Arizona State University, Tempe, Arizona 85287-1504, USA
3University of California at Los Angeles, Los Angeles, California 90095-1547, USA
4Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
5Catholic University of America, Washington, DC 20064, USA
6CEA-Saclay, Service de Physique Nucleaire, F91191 Gif-sur-Yvette, Cedex, France
7Christopher Newport University, Newport News, Virginia 23606, USA
8University of Connecticut, Storrs, Connecticut 06269, USA
9Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
10Florida International University, Miami, Florida 33199, USA
11Florida State University, Tallahassee, Florida 32306, USA
12The George Washington University, Washington, DC 20052, USA
13University of Glasgow, Glasgow G12 8QQ, United Kingdom
14Idaho State University, Pocatello, Idaho 83209, USA
15INFN, Laboratori Nazionali di Frascati, Frascati, Italy
16INFN, Sezione di Genova, 16146 Genova, Italy
17Institut de Physique Nucleaire ORSAY, Orsay, France
18Institute of Theoretical and Experimental Physics, Moscow, 117259 Russia
19James Madison University, Harrisonburg, Virginia 22807, USA
20Kyungpook National University, Daegu 702-701, South Korea
21Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
22University of Massachusetts, Amherst, MA 01003, USA

0031-9007/06/96(8)/082501(6)$23.00 082501-1 © 2006 The American Physical Society
Understanding short-range correlations (SRC) in nuclei has been one of the persistent though rather elusive goals of nuclear physics for decades. Calculations of nuclear wave functions using realistic nucleon-nucleon (NN) interactions suggest a substantial probability for a nucleon in a heavy nucleus to have a momentum above the Fermi momentum k_F. The dominant mechanism for generating high momenta is the NN interaction at distances less than the average internucleon distance, corresponding to nuclear densities comparable to neutron star core densities. It involves both tensor forces and short-range repulsive forces, which share two important features, locality and short-range correlation interactions (SRC). The use of high energy electron-nucleus scattering to the kinetic energy of the second nucleon. The dominant mechanism for generating high momenta is the NN interaction at distances less than the average internucleon distance, corresponding to nuclear densities comparable to neutron star core densities.

The simplest of such processes is inclusive electron scattering, $A(e, e')$, at four-momentum transfer $Q^2 \geq 4\text{ GeV}^2$. We suppress scattering off the mean field nucleons by requiring $x_B = Q^2/2m_N\nu \geq 1.3$ (where ν is the energy transfer) and we can resolve SRC by transferring energies and momenta much larger than the SRC scale.

Since the probabilities of j-nucleon SRC should drop rapidly with j (since the nucleus is a dilute bound system of nucleons) one expects that scattering from j-nucleon SRC will dominate at $j - 1 < x_B < j$. Therefore the cross section ratios of heavy and light nuclei should be independent of x_B and Q^2 (i.e., scale) and have discrete values for different j: $\frac{\sigma_j(Q^2, x_B)}{\sigma_0(Q^2, x_B)} = \frac{A}{j} \frac{\alpha_j(A)}{\alpha_0(A)}$. This “scaling” of the ratio will be strong evidence for the dominance of scattering from a j-nucleon SRC.
would demonstrate the presence of 3-nucleon (3N) SRC and confirm the previous observation of NN SRC.

Note that: (i) Refs. [5,6] argue that the c.m. motion of the NN SRC may change the value of \(\alpha_2 \) (by up to 20% for \(^{56}\text{Fe} \)) but not the scaling at \(x_B \approx 2 \). For 3N SRC there are no estimates of the effects of c.m. motion. (ii) Final state interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nucleons in the SRC [7,8]. Hence the FSI can modify interactions (FSI) are dominated by the interaction of the struck nucleon with the other nu

In our previous work [6] we showed that the ratios \(R(A, \text{He}) = \frac{3 \sigma_{e\gamma}(Q^2, x_B)}{A \sigma_{ie}(Q^2, x_B)} \) scale for \(1.5 < x_B < 2 \) and \(1.4 < Q^2 < 2.6 \text{ GeV}^2 \), confirming findings in Ref. [7]. Here we repeat our previous measurement with higher statistics which allows us to estimate the absolute per-nucleon probabilities of \(NN \) SRC.

We also search for the even more elusive 3N SRC, correlations which originate from both short-range \(NN \) interactions and three-nucleon forces, using the ratio \(R(A, \text{He}) \) at \(2 < x_B \leq 3 \).

Two sets of measurements were performed at the Thomas Jefferson National Accelerator Facility in 1999 and 2002. The 1999 measurements used 4.461 GeV electrons incident on liquid \(^{3}\text{He} \), \(^{4}\text{He} \) and solid \(^{12}\text{C} \) targets. The 2002 measurements used 4.471 GeV electrons incident on a solid \(^{56}\text{Fe} \) target and 4.703 GeV electrons incident on a liquid \(^{3}\text{He} \) target.

Scattered electrons were detected in the CLAS spectrometer [9]. The lead-scintillator electromagnetic calorimeter provided the electron trigger and was used to identify electrons in the analysis. Vertex cuts were used to eliminate the target walls. The estimated remaining contribution from the two Al 15 \(\mu \text{m} \) target cell windows is less than 0.1%. Software fiducial cuts were used to exclude regions of nonuniform detector response. Kinematic corrections were applied to compensate for drift chamber misalignments and magnetic field uncertainties.

We used the \textsc{geant}-based CLAS simulation, GSIM, to determine the electron acceptance correction factors, taking into account “bad” or “dead” hardware channels in various components of CLAS. The measured acceptance-corrected, normalized inclusive electron yields on \(^{3}\text{He} \), \(^{4}\text{He} \), \(^{12}\text{C} \), and \(^{56}\text{Fe} \) at \(1 < x_B < 2 \) agree with Sargsian’s radiated cross sections [10] that were tuned on SLAC data [11] and describe reasonably well the Jefferson Lab Hall C [12] data.

We constructed the ratios of inclusive cross sections as a function of \(Q^2 \) and \(x_B \), with corrections for the CLAS acceptance and for the elementary electron-nucleon cross sections:

\[
 r(A, \text{He}) = \frac{A(2 \sigma_{e\gamma} + \sigma_{en})}{3(Z \sigma_{e\gamma} + N \sigma_{en})} \frac{A Y(A)}{A Y(^{3}\text{He})} R_{\text{rad}}^A \quad (2)
\]

FIG. 1. Weighted cross section ratios [see Eq. (2)] of (a) \(^{4}\text{He} \), (b) \(^{12}\text{C} \), and (c) \(^{56}\text{Fe} \) to \(^{3}\text{He} \) as a function of \(x_B \) for \(Q^2 > 1.4 \text{ GeV}^2 \). The horizontal dashed lines indicate the \(NN \) (1.5 < \(x_B < 2 \)) and \(3N \) (\(x_B > 2.25 \)) scaling regions.
dominate in this region, (b) increase with x_B for $2 < x_B < 2.25$, which can be explained by scattering off nucleons involved in moving NN SRCs, and (c) scale a second time at $x_B > 2.25$ [for ^4He ratio see also Ref. [4], Fig. 8.3a], indicating that $3N$ SRCs dominate in this region. The experimental ratios clearly show the onset of new scaling at $x_B > 2$, which, because of its small A dependence, must be a distinctly local nuclear phenomenon. Note that in the first x_B-scaling region, the ratios are also independent of Q^2 for $1.4 < Q^2 < 2.6 \text{ GeV}^2$ [6,8]. In the second x_B-scaling region the ratios also appear to be independent, but with some fluctuations and large statistical uncertainties [see Fig. 19 of Ref. [8]].

We will analyze the observed scaling within the framework of the SRC model which unambiguously predicted the onset of scaling and related them to the probabilities of NN and $3N$ correlations in nuclei. The ratios of the per-nucleon SRC probabilities (neglecting c.m. motion and Coulomb interaction effects) in nucleus A relative to ^3He, $a_2(A/^3\text{He})$, and $a_3(A/^3\text{He})$, are just the values of the ratio r in the appropriate scaling region. $a_2(A/^3\text{He})$ is evaluated at $1.5 < x_B < 2$ and $a_3(A/^3\text{He})$ is evaluated at $x_B > 2.25$ corresponding to the dashed lines in Fig. 1.

Thus, the chances for each nucleon to be involved in a NN SRC in ^4He, ^{12}C, and ^{56}Fe are 1.9, 2.4, and 2.8 times higher than in ^3He. The chances for each nucleon to be involved in a $3N$ SRC are, respectively, 2.3, 3.1, and 4.4 times higher than in ^3He. See Table I.

To obtain the absolute values of the per-nucleon probabilities of SRCs, $a_{2N}(A)$ and $a_{3N}(A)$, from the measured ratios, $a_2(A/^3\text{He}) = a_{2N}(A)/a_{2N}(^3\text{He})$ and $a_3(A/^3\text{He}) = a_{3N}(A)/a_{3N}(^3\text{He})$ we need to know the absolute per-nucleon SRC probabilities for ^3He, $a_{2N}(^3\text{He})$, and $a_{3N}(^3\text{He})$. The probability of NN SRC in ^3He is the product of the probability of NN SRC in deuterium and the relative probability of NN SRC in ^3He and d, $a_2(^3\text{He}/d)$. We define the probability of NN SRC in deuterium as the probability that a nucleon in deuterium has a momentum $k > k_{\text{min}}$, where k_{min} is the minimum recoil momentum corresponding to the onset of scaling. Since at $Q^2 = 1.4 \text{ GeV}^2$, scaling begins at $x_B = 1.5 \pm 0.05$, we obtain $k_{\text{min}} = 275 \pm 25 \text{ MeV}$ [8]. The integral of the momentum distribution for $k > k_{\text{min}}$ gives $a_{2N}(d) = 0.041 \pm 0.008$ [8], where the uncertainty is due to the uncertainty of k_{min}. The second factor, $a_2(^3\text{He}/d) = 1.97 \pm 0.1$ [6], comes from the weighted average of the experimental value 1.7 ± 0.3 [7] and theoretical value 2.0 ± 0.1, calculated [10] with the available ^2H and ^3He wave functions [2,15] [for this ratio value, see also [16]]. Thus, $a_{2N}(^3\text{He}) = 0.08 \pm 0.016$.

Thus, the absolute per-nucleon probabilities for NN SRC are 0.15, 0.19, and 0.23 for ^4He, ^{12}C, and ^{56}Fe, respectively (see Table I). In other words, at any moment, the numbers of NN SRC [which is $\frac{1}{A}a_{2N}(A)$] are 0.12, 0.3, 1.2, and 6.4 for ^3He, ^4He, ^{12}C, and ^{56}Fe, respectively.

Similarly, to obtain the absolute probability of $3N$ SRC we need the probability that the three nucleons in ^3He are in a $3N$ SRC. The start of the second scaling region at $Q^2 = 1.4 \text{ GeV}^2$ and $x_B = 2.25 \pm 0.1$ corresponds to $k_{\text{min}} = 500 \pm 20 \text{ MeV}$. In addition, since this momentum must be balanced by the momenta of the other two nucleons [17], we require that $k_1 \geq 500 \text{ MeV}$ and $k_2, k_3 \leq 250 \text{ MeV}$. This integral over the Bochum group’s [15] ^3He wave function ranges from 0.12% to 0.24% for various combinations of the CD Bonn [18] and Urbanna [19] NN potentials and the Tucson-Melbourne [20] and Urbanna-IX [21] $3N$ forces. We use the average value, $a_{3N}(^3\text{He}) = 0.18 \pm 0.06\%$, to calculate the absolute values of $a_{3N}(A)$ shown in the fifth column of Table I. The per-nucleon probabilities of $3N$ SRC in all nuclei are smaller than the NN SRC probabilities by more than a factor of 10. Note that these results contain considerable theoretical uncertainties; however, it gives the estimate of the abundance of $3N$ versus $2N$ SRC.

The systematic uncertainties are discussed in detail in Ref. [8]. For the relative per-nucleon SRC probabilities the main sources of these uncertainties are: radiative and acceptance correction factors, corrections due to the difference of (ep) and (en) scattering cross sections and measurements at separate beam energies, liquid ^3He and ^4He targets effective length determination. The total systematic uncertainties are: (i) in the $a_2(A/^3\text{He})$ probabilities—7.2%, 7.1%, and 6.3% for $A = 4, 12$, and 56, respectively; (ii) in the $a_3(A/^3\text{He})$ probabilities—8.1%, 7.1%, and 7.4% for the same nuclei, respectively. For the

<table>
<thead>
<tr>
<th>^3He</th>
<th>^4He</th>
<th>^{12}C</th>
<th>^{56}Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_2(A/^3\text{He})$</td>
<td>1</td>
<td>19.3 ± 0.14</td>
<td>$2.41 \pm 0.02 \pm 0.17$</td>
</tr>
<tr>
<td>$a_3(A/^3\text{He})$</td>
<td>8.0 ± 1.6</td>
<td>15.4 ± 3.3</td>
<td>22.7 ± 4.7</td>
</tr>
<tr>
<td>$a_{2N}(A)$ (%)</td>
<td>1</td>
<td>$23.3 \pm 0.12 \pm 0.19$</td>
<td>$4.38 \pm 0.19 \pm 0.33$</td>
</tr>
<tr>
<td>$a_{3N}(A)$ (%)</td>
<td>0.18 ± 0.06</td>
<td>0.42 ± 0.14</td>
<td>0.79 ± 0.25</td>
</tr>
</tbody>
</table>
absolute per-nucleon SRC probabilities there are additional uncertainties from determining the momentum onset of scaling and from the deuterium and \(^3\)He wave functions: \(\approx 20\% \) for 2-nucleon and \(\approx 30\% \) for 3-nucleon SRC probabilities. For the \(^{56}\)Fe/\(^3\)He ratio there is also a 2\%–6\% uncertainty from the electron-nucleus Coulomb interaction [22,23] for both 2- and 3-nucleon SRC. In addition, there is a possible pair c.m. motion effect which can reduce the ratio up to 20\% for 2-nucleon SRC. For 3-nucleon SRC this effect is not estimated yet. Since there is no exact estimate of the last two uncertainties, we do not include them in the systematic errors of our data (see Table I) [24].

We compared the \(NN \) SRC probabilities to various models. The SRC model predicts [4] the relative to deuterium probabilities of \(NN \) SRC in \(^4\)He (\sim 4) and \(^{12}\)C (5 \pm 0.1), based on an analysis of hadro-production data. Using the above discussed value of \(a_2(\alpha/\alpha) = 1.97 \pm 0.1 \) we can find the predictions for the relative to \(^3\)He probabilities \(a_2(\alpha/\alpha) = 2.03 \pm 0.1 \), and \(a_3(\alpha/\alpha) = 2.53 \pm 0.5 \). The SRC model also predicts the ratio \(a_2(\alpha/\alpha) / a_3(\alpha/\alpha) = 1.26 \) based on Fermi liquid theory. These are remarkably close to the experimental values of \(1.93 \pm 0.02 \pm 0.14, 2.41 \pm 0.03 \pm 0.17, \) and \(1.17 \pm 0.04 \pm 0.11 \), respectively. For 3\(NN \) SRC probabilities the SRC model predicts [4] \(a_3(\alpha/\alpha) / a_\alpha(\alpha/\alpha) = 1.40 \) which is also remarkably close to the experimental value of \(1.43 \pm 0.09 \pm 0.15 \).

Levinger’s quasideuteron model [25] predicts 1.1 (\(pn \)) pairs for all nuclei, which disagree with experiment, probably because it includes low momentum (\(pn \)) pairs only.

Forest [16] calculates the ratios of the pair density distributions for nuclei relative to deuterium and gets 2.0, 4.7, and 18.8 for \(^3\)He, \(^4\)He, and \(^{16}\)O, respectively. If one assumes that this corresponds to \(a_2(\alpha/\alpha) \), then \(a_2(\alpha/\alpha) = a_2(\alpha/\alpha) = 1.76 \) compared to experimental values of 1.96 for \(^4\)He and 2.41 for \(^{12}\)C.

The Iowa State University/University of Arizona group calculates 6- and 9-quark-cluster probabilities for many nuclei [26]. If these clusters are identical to 2 and 3\(NN \) SRC, respectively, then the calculated probabilities of 6-quark clusters for \(^4\)He, \(^{12}\)C, and \(^{56}\)Fe are within about a factor of 2 of the measured \(NN \) SRC probabilities. The ratio \(a_2(\alpha/\alpha) / a_3(\alpha/\alpha) = 1.16 \) agrees with the experimental value of 1.17 \pm 0.04 \pm 0.11. However, the predicted probabilities of 9-quark clusters are larger than the our \(a_3(\alpha/\alpha) \) value by about a factor of 10.

In summary, the \(A(e,e') \) inclusive electron scattering cross section ratios of \(^4\)He, \(^{12}\)C, and \(^{56}\)Fe to \(^3\)He have been measured at \(1 < x_B < 3 \) for the first time. (1) These ratios at \(Q^2 > 1.4 \text{ GeV}^2 \) scale in two intervals of \(x_B \): (a) in the \(NN \) short-range correlation (SRC) region at \(1.5 < x_B < 2 \), and (b) in the 3\(NN \) SRC region at \(x_B > 2.25 \); (2) for \(A \geq 12 \), the change in the ratios in both scaling regions is consistent with the second and third powers of the nuclear density, respectively; (3) these features are consistent with the theoretical expectations that \(NN \) SRC dominate the nuclear wave function at \(k_{\text{min}} \approx 300 \text{ MeV} \) and 3\(NN \) SRC dominate at \(k_{\text{min}} \approx 500 \text{ MeV} \); (4) the chances for each nucleon to be involved in a \(NN \) SRC in \(^4\)He, \(^{12}\)C, and \(^{56}\)Fe nuclei are 1.9, 2.4, and 2.8 times higher than in \(^3\)He, while the same chances for 3\(NN \) SRC are, respectively, 2.3, 3.1, and 4.4 times higher; (5) in \(^4\)He, \(^{12}\)C, and \(^{56}\)Fe, the absolute per-nucleon probabilities of 2- and 3-nucleon SRC are 15\%–23\% and 0.4\%–0.8\%, respectively. This is the first measurement of 3\(NN \) SRC probabilities in nuclei.

We thank the staff of the Accelerator and Physics Divisions at Jefferson Lab for their support. We also acknowledge useful discussions with J. Arrington and E. Piasecki. This work was supported in part by the U.S. Department of Energy (DOE), the National Science Foundation, the Armenian Ministry of Education and Science, the French Commissariat à l’Energie Atomique, the French Centre National de la Recherche Scientifique, the Italian Istituto Nazionale di Fisica Nucleare, and the Korea Research Foundation. The Southeastern Universities Research Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the DOE under Contract No. DE-AC05-84ER40150.

[23] J. A. Tjon (private communication).

[24] There is an additional 10% errors due to the accuracy of the closure approximation used for FSI which we estimate based on the study of the $^3\text{He}(e, e'N)N$ reaction using the formalism of Ref. 17.