January 1, 2001

Measurement of CP-violating asymmetries in B-0 decays to CP eigenstates

B Aubert
D Boutigny
I De Bonis
JM Gaillard
K Jeremie, et al.
Measurement of CP-Violating Asymmetries in B^0 Decays to CP Eigenstates

University of Birmingham, Birmingham B15 2TT, United Kingdom

7 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

8 University of Bristol, Bristol BS8 1TL, United Kingdom

9 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

10 Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

11 Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

12 University of California at Irvine, Irvine, California 92697

13 University of California at Los Angeles, Los Angeles, California 90024

14 University of California at San Diego, La Jolla, California 92093

15 University of California at Santa Barbara, Santa Barbara, California 93106

16 Institute for Particle Physics, University of California at Santa Cruz, Santa Cruz, California 95064

17 California Institute of Technology, Pasadena, California 91125

18 University of Cincinnati, Cincinnati, Ohio 45221

19 University of Colorado, Boulder, Colorado 80309

20 Colorado State University, Fort Collins, Colorado 80523

21 Technische Universität Dresden, Institut für Kern-u. Teilchenphysik, D-01062 Dresden, Germany

22 Ecole Polytechnique, F-91128 Palaiseau, France

23 University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

24 Elon College, Elon College, North Carolina 27244-2010

25 Dipartimento di Fisica and INFN, Università di Ferrara, I-44100 Ferrara, Italy

26 Florida A&M University, Tallahassee, Florida 32307

27 Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

28 Dipartimento di Fisica and INFN, Università di Genova, I-16146 Genova, Italy

29 Harvard University, Cambridge, Massachusetts 02138

30 University of Iowa, Iowa City, Iowa 52242-3160

31 Iowa State University, Ames, Iowa 50011

32 Laboratoire de l’Accélérateur Linéaire, F-91898 Orsay, France

33 Lawrence Livermore National Laboratory, Livermore, California 94550

34 University of Liverpool, Liverpool L69 3BX, United Kingdom

35 University of London, Imperial College, London SW7 2BW, United Kingdom

36 Queen Mary, University of London, London E1 4NS, United Kingdom

37 University of London, Royal Holloway, and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

38 University of Louisville, Louisville, Kentucky 40292

39 University of Manchester, Manchester M13 9PL, United Kingdom

40 University of Maryland, College Park, Maryland 20742

41 University of Massachusetts, Amherst, Massachusetts 01003

42 Lab for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

43 McGill University, Montréal, Canada QC H3A 2T8

44 Dipartimento di Fisica and INFN, Università di Milano, I-20133 Milano, Italy

45 University of Mississippi, University Mississippi 38677

46 Laboratoire René J.A. Lévesque, Université de Montréal, Montréal, Canada QC H3C 3J7

47 Mount Holyoke College, South Hadley, Massachusetts 01075

48 Dipartimento di Scienze Fisiche and INFN, Università di Napoli Federico II, I-80126 Napoli, Italy

49 University of Notre Dame, Notre Dame, Indiana 46556

50 Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

51 University of Oregon, Eugene, Oregon 97403

52 Dipartimento di Fisica and INFN, Università di Padova, I-35131 Padova, Italy

53 Lab de Physique Nucléaire H.E., Universités Paris VI et VII, F-75252 Paris, France

54 Dipartimento di Elettronica and INFN, Università di Pavia, I-27100 Pavia, Italy

55 University of Pennsylvania, Philadelphia, Pennsylvania 19104

56 Scuola Normale Superiore and INFN, Università di Pisa, I-56010 Pisa, Italy

57 Prairie View A&M University, Prairie View, Texas 77446

58 Princeton University, Princeton, New Jersey 08544

59 Dipartimento di Fisica and INFN, Università di Roma La Sapienza, I-00185 Roma, Italy

60 Universität Rostock, D-18051 Rostock, Germany

61 Rutgers University, New Brunswick, New Jersey 08903

62 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom

63 DAPNIA, Commissariat à l’Energie Atomique/Saclay, F-91911 Gif-sur-Yvette, France

64 University of South Carolina, Columbia, South Carolina 29208

65 Stanford Linear Accelerator Center, Stanford, California 94309

66 Stanford University, Stanford, California 94305-4060

67 TRIUMF, Vancouver, British Columbia, Canada V6T 2A3
We present measurements of time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurement uses a data sample of 23×10^6 $Y(4S) \to \bar{B}B$ decays collected by the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we find events in which one neutral B meson is fully reconstructed in a CP eigenstate containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to $\sin \beta$, is derived from the decay time distributions in such events. The result is $\sin \beta = 0.34 \pm 0.20$ (stat) ± 0.05 (syst).

DOI: 10.1103/PhysRevLett.86.2515 PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

CP-violating asymmetries in the time distributions of decays of B^0 and \bar{B}^0 mesons provide a direct test of the standard model of electroweak interactions [1]. For the neutral B decay modes reported here, corrections to CP-violating effects from strong interactions are absent, in contrast to the K^{\pm}_L modes in which CP violation was discovered [2].

Using a data sample of $23 \times 10^6 \bar{B}B$ pairs recorded at the $Y(4S)$ resonance by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at the Stanford Linear Accelerator Center, we have fully reconstructed a sample B_{CP} of neutral B mesons decaying to the CP eigenstates $J/\psi K^0_S$, $\psi(2S)K^0_S$, and $J/\psi K^0_L$. We examine each of the events in this sample for evidence that the other neutral B meson decayed as a B^0 or a \bar{B}^0, designated as a B^0 or \bar{B}^0 flavor tag. The final B_{CP} sample contains about 360 signal events.

When the $Y(4S)$ decays, the P-wave $\bar{B}B$ state evolves coherently until one of the mesons decays. In one of four time-order and flavor configurations, if the tagging meson B_{tag} decays first, and as a B^0, the other meson must be a \bar{B}^0 at that same time t_{tag}. It then evolves independently and can decay into a CP eigenstate B_{CP} at a later time t_{CP}. The time between the two decays $\Delta t = t_{CP} - t_{tag}$ is a signed quantity made measurable by producing the $Y(4S)$ with a boost $\beta\gamma = 0.56$ along the collision (z) axis, with nominal energies of 9.0 and 3.1 GeV for the electron and positron beams. The measured distance $\Delta z = \beta\gamma c \Delta t$ between the two decay vertices provides a good estimate of the corresponding time interval Δt; the average value of $|\Delta z|$ is $\beta\gamma c t_{CP} = 250$ μm.

The decay-time distribution for events with a B^0 or a \bar{B}^0 tag can be expressed in terms of a complex parameter λ that depends on both $B^0\bar{B}^0$ mixing and on the amplitudes describing B^0 and \bar{B}^0 decay to a common final state f [3]. The distribution $f_+(f_-)$ of the decay rate when the tagging meson is a $B^0(\bar{B}^0)$ is given by

$$f_\pm(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}(1 + |\lambda|^2)} \times \left[1 + \frac{|\lambda|^2}{2} \pm \text{Im} \lambda \sin(\Delta m_{B^0} \Delta t) + \frac{1}{2} \cos(\Delta m_{B^0} \Delta t) \right],$$

where τ_{B^0} is the B^0 lifetime and Δm_{B^0} is the mass difference determined from $B^0\bar{B}^0$ mixing [4], and where the lifetime difference between neutral B mass eigenstates is assumed to be negligible. The first oscillatory term in Eq. (1) is due to interference between direct decay and decay after mixing. A difference between the B^0 and \bar{B}^0 distributions or a Δt asymmetry for either tag is evidence for CP violation.

If all amplitudes contributing to $B^0 \to f$ have the same weak phase, a condition satisfied in the standard model for charmonium-containing $b \to c\bar{c}z$ decays, then $|\lambda| = 1$. For these CP eigenstates the standard model predicts $\lambda = \eta_f e^{-2i\beta}$, where η_f is the CP eigenvalue of the state f and $\beta = \arg[-V_{cd}V_{cb}^*/V_{ub}^*V_{ub}]$ is an angle of the unitarity triangle of the three-generation Cabibbo-Kobayashi-Maskawa (CKM) matrix [5]. Thus, the time-dependent CP-violating asymmetry is

$$A_{CP}(\Delta t) = \frac{f_+(\Delta t) - f_-(\Delta t)}{f_+(\Delta t) + f_-(\Delta t)} = -\eta_f \sin2\beta \sin(\Delta m_{B^0} \Delta t),$$

where $\eta_f = -1$ for $J/\psi K^0_S$ and $\psi(2S)K^0_S$ and $+1$ for $J/\psi K^0_L$.

A measurement of A_{CP} requires determination of the experimental Δt resolution and the fraction of events in which the tag assignment is incorrect. A mistag fraction w reduces the observed asymmetry by a factor $(1 - 2w)$.

Several samples of fully reconstructed B^0 mesons are used in this measurement. The B_{CP} sample contains candidates reconstructed in the CP eigenstates $J/\psi K^0_S(K^{0*}_L \to \pi^+\pi^-\pi^0\eta^0)$, $\psi(2S)K^0_L(K^{0*}_L \to \pi^+\pi^-\pi^0\eta^0)$, and $J/\psi K^0_S$. The J/ψ and $\psi(2S)$ mesons are reconstructed through their decays to e^+e^- and $\mu^+\mu^-$; the $\psi(2S)$ is...
also reconstructed through its decay to $J/\psi \pi^+ \pi^-$. A sample of B decays B_{flav} [6] used in the determination of the mistag fractions and Δt resolution functions consists of the channels $D^{(*)} \rightarrow h^+ (h^+ = \pi^+, \rho^+, \alpha_1^*)$ and $J/\psi K^{*0}(K^{*0} \rightarrow K^+ \pi^-)$. A control sample of charged B mesons decaying to the final states $J/\psi K^{(*)+}$, $\psi(2S)K^+$, and $D^{(*)} \rightarrow \pi^+$ is used for validation studies.

A description of the B_{abar} detector can be found in Ref. [7]. Charged particles are detected and their momenta measured by a combination of a silicon vertex tracker (SVT) consisting of five double-sided layers and a central drift chamber (DCH), in a 1.5-T solenoidal field. The average vertex resolution in the z direction is 70 μm for a fully reconstructed B meson. We identify leptons and hadrons with measurements from all detector systems, including the energy loss (dE/dx) in the DCH and SVT. Electrons and photons are identified by a CsI electromagnetic calorimeter (EMC). Muons are identified in the instrumented flux return (IFR). A Cherenkov ring imaging detector (DIRC) covering the central region, together with the dE/dx information, provides $K^-\pi^+$ separation of at least 3 standard deviations for B decay products with momentum greater than 250 MeV/c in the laboratory.

We select events with a minimum of three reconstructed charged tracks, each having a laboratory polar angle between 0.41 and 2.54 rad and an impact parameter in the plane transverse to the beam less than 1.5 cm from the beam line. The event must have a total measured energy in the laboratory greater than 4.5 GeV within the fiducial regions for charged tracks and neutral clusters. To help reject continuum background, the second Fox-Wolfram moment [8] must be less than 0.5.

An electron candidate must have a ratio of calorimeter energy to track momentum, an EMC cluster shape, a DCH dE/dx, and a DIRC Cherenkov angle (if available) consistent with an electron.

A muon candidate must satisfy requirements on the measured and expected number of interaction lengths penetrated, the position match between the extrapolated DCH track and IFR hits, and the average and spread of the number of IFR hits per layer.

A track is identified as a kaon candidate by means of a neural network that uses dE/dx measurements in the DCH and SVT, and comparison of the observed pattern of detected photons in the DIRC with that expected for kaon and pion hypotheses.

Candidates for $J/\psi \rightarrow \ell^+ \ell^-$ must have at least one decay product identified as a lepton (electron or muon) candidate or, if outside the calorimeter acceptance, must have DCH dE/dx information consistent with the electron hypothesis. Tracks in which the electron has radiated are combined with bremsstrahlung photons, reconstructed as clusters with more than 30 MeV lying within 35 mrad in polar angle and 50 mrad in azimuth of the projected photon position on the EMC. The second track of a $\mu^+ \mu^-$ pair, if within the acceptance of the calorimeter, must be consistent with being a minimum ionizing particle. Two identified electron or muon candidates are required for J/ψ or $\psi(2S) \rightarrow \ell^+ \ell^-$ reconstruction in the higher-background $\psi(2S)K^0_s$ and $J/\psi K^0_s$ channels.

We require a J/ψ candidate to have $2.95 \leq m_{\ell^+ \ell^-} \leq 3.14$ GeV/c^2 or $3.06 \leq m_{\mu^+ \mu^-} \leq 3.14$ GeV/c^2, and a $\psi(2S) \rightarrow \ell^+ \ell^-$ candidate to have $3.44 \leq m_{\ell^+ \ell^-} \leq 3.74$ GeV/c^2 or $3.64 \leq m_{\mu^+ \mu^-} \leq 3.74$ GeV/c^2. Requirements are made on the lepton helicity angle in order to provide further discrimination against background. For the $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$ mode, mass-constrained J/ψ candidates are combined with pairs of oppositely charged tracks considered as pions; the resulting mass must be within 15 MeV/c^2 of the $\psi(2S)$ mass [4].

A $K^0_s \rightarrow \pi^+ \pi^-$ candidate must satisfy $489 < m_{\pi^+ \pi^-} < 507$ MeV/c^2. The distance between the J/ψ or $\psi(2S)$ and K^0_s vertices is required to be at least 1 mm.

Pairs of π^0 candidates with total energy above 800 MeV are considered as K^0_s candidates for the $J/\psi K^0_s$ mode. We determine the most probable K^0_s decay point along the path defined by the initial K^0_s momentum vector and the J/ψ vertex by maximizing the product of probabilities for the daughter π^0 mass-constrained fits. Allowing for vertex resolution, we require the displacement from the J/ψ vertex to the decay point to be between -10 and $+40$ cm and the $\pi^0 \pi^0$ mass evaluated at this point to be between 470 and 550 MeV/c^2.

A K^0_s candidate is formed from a cluster not matched to a reconstructed track. For the EMC the cluster must have energy above 200 MeV, while for the IFR the cluster must have at least two layers. We determine the K^0_s energy by combining its direction with the reconstructed J/ψ momentum, assuming the decay $B^0 \rightarrow J/\psi K^0_s$. To reduce photon backgrounds, EMC clusters consistent with a $\pi^0 \rightarrow \gamma \gamma$ decay are rejected and the transverse missing momentum of the event projected on the K^0_s candidate direction must be consistent with the K^0_s momentum. In addition, the center-of-mass J/ψ momentum is required to be greater than 1.4 GeV/c.

B_{cp} candidates used in the analysis are selected by requiring that the difference ΔE between the energy of the B_{cp} candidate and the beam energy in the center-of-mass frame be less than 3 standard deviations from zero and that, for K^0_s modes, the beam-energy-substituted mass $m_{\text{ES}} = \sqrt{(E_{\text{beam}})^2 - (p_B)^2} / c^2$ must be greater than 5.2 GeV/c^2. The resolution for ΔE is about 10 MeV, except for $J/\psi K^0_s$ (3 MeV) and the $K^0_s \rightarrow \pi^0 \pi^0$ mode (33 MeV). For the purpose of determining numbers of events, purities, and efficiencies, a signal region $m_{\text{ES}} > 5.27$ GeV/c^2 is used for all modes except $J/\psi K^0_s$.

Figure 1 shows the resulting ΔE and m_{ES} distributions for B_{cp} candidates containing a K^0_s, and ΔE for the candidates containing a K^0_s. The B_{cp} sample is composed of 890 events in the signal region, with an estimated background of 260 events, predominantly in the $J/\psi K^0_s$ channel. For that channel, the composition, effective η_s, and ΔE distributions of the individual background sources are
Table I shows the number of tagged events and the signal purity, determined from fits to the m_{ES} (K^0_s modes) or ΔE (K^0_L mode) distributions. The measured efficiencies for the four tagging categories are summarized in Table II.

The uncertainty in the Δt measurement is dominated by the measurement of the position z_{tag} of the tagging vertex. The tagging vertex is determined by fitting the tracks not belonging to the B_{CP} (or B_{flav}) candidate to a common vertex. Reconstructed K^0_L and Λ candidates are used as input to the fit in place of their daughters. Tracks from γ conversions are excluded from the fit. To reduce contributions from charm decay, which bias the vertex estimation, the track with the largest vertex χ^2 contribution greater than 6 is removed and the fit is redone until no track fails the χ^2 requirement or fewer than two tracks remain. The average resolution for $\Delta z = z_{CP} - z_{tag}$ is 190 μm. The time interval Δt between the two B decays is then determined from the Δz measurement, including an event-by-event correction for the direction of the B with respect to the z direction in the Y (4S) frame. An accepted candidate must have a converged fit for the B_{CP} and B_{tag} vertices, an error of less than 400 μm on Δz, and a measured $|\Delta z| < 3$ mm; 86% of the B_{CP} events satisfy this requirement.

The $\sin 2\beta$ measurement is made with an unbinned maximum likelihood fit to the Δt distribution of the combined B_{CP} and B_{flav} tagged samples. The Δt distribution of the former is given by Eq. (1), with $|\lambda| = 1$. The latter evolves according to the known rate for flavor oscillations in neutral B mesons. The amplitudes for B_{CP} asymmetries and for B_{flav} flavor oscillations are reduced by the same factor as the B_{CP} amplitude. The B_{flav} flavor oscillations are reduced by the same factor as the B_{CP} amplitude.

<table>
<thead>
<tr>
<th>Sample</th>
<th>N_{tag}</th>
<th>Purity (%)</th>
<th>$\sin 2\beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J/\psi K^0_s, \psi(2S)K^0_s$</td>
<td>273</td>
<td>96 \pm 1</td>
<td>0.25 \pm 0.22</td>
</tr>
<tr>
<td>$J/\psi K^0_s$</td>
<td>256</td>
<td>39 \pm 6</td>
<td>0.87 \pm 0.51</td>
</tr>
<tr>
<td>Full CP sample</td>
<td>529</td>
<td>69 \pm 2</td>
<td>0.34 \pm 0.20</td>
</tr>
</tbody>
</table>

Table I. Number of tagged events, signal purity, and result of fitting for CP asymmetries in the full CP sample and in various subsamples, as well as in the B_{flav} and charged B control samples. Purity is the fitted number of signal events divided by the total number of events in the ΔE and m_{ES} signal region defined in the text. Errors are statistical only.
The determination of the mistag fractions and signal resolution function is dominated by the high-statistics sample. The figure of merit for tagging is the effective tagging efficiency \(Q = e_i(1 - 2w_i)^2 \), where \(e_i \) is the fraction of events with a reconstructed tag vertex that is assigned to the \(i \)th category. Uncertainties are statistical only. The statistical error on \(\sin^2 \beta \) is proportional to \(1/\sqrt{Q} \), where \(Q = \sum Q_i \).

The average mistag fractions \(w_i \) and mistag differences \(\Delta w_i = w_i(B^0) - w_i(B^0) \) extracted for each tagging category \(i \) from the maximum-likelihood fit to the time distribution for the fully reconstructed \(B^0 \) sample \((B^0_{\text{mix}} + B^0_{CP}) \). The figure of merit for tagging is the effective tagging efficiency \(Q_i = e_i(1 - 2w_i)^2 \), where \(e_i \) is the fraction of events with a reconstructed tag vertex that is assigned to the \(i \)th category. Uncertainties are statistical only. The statistical error on \(\sin^2 \beta \) is proportional to \(1/\sqrt{Q} \), where \(Q = \sum Q_i \).

<table>
<thead>
<tr>
<th>Category</th>
<th>(e) (%)</th>
<th>(w) (%)</th>
<th>(\Delta w) (%)</th>
<th>(Q) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton</td>
<td>10.9 ± 0.4</td>
<td>11.6 ± 2.0</td>
<td>3.1 ± 3.1</td>
<td>6.4 ± 0.7</td>
</tr>
<tr>
<td>Kaon</td>
<td>36.5 ± 0.7</td>
<td>17.1 ± 1.3</td>
<td>-1.9 ± 1.9</td>
<td>15.8 ± 1.3</td>
</tr>
<tr>
<td>NT1</td>
<td>7.7 ± 0.4</td>
<td>21.2 ± 2.9</td>
<td>7.8 ± 4.2</td>
<td>2.6 ± 0.5</td>
</tr>
<tr>
<td>NT2</td>
<td>13.7 ± 0.5</td>
<td>31.7 ± 2.6</td>
<td>-4.7 ± 3.5</td>
<td>1.8 ± 0.5</td>
</tr>
<tr>
<td>All</td>
<td>68.9 ± 1.0</td>
<td></td>
<td></td>
<td>26.7 ± 1.6</td>
</tr>
</tbody>
</table>

The measured mistag rates obtained from the likelihood fit for the four tagging categories are summarized in Table II. As a check, the mistag rates were evaluated with a sample of about 16,000 \(D^{*-} \ell^+ \nu_\ell \) events and found to be consistent with the results from the hadronic decay sample.

The combined fit to the \(CP \) decay modes and the flavor decay modes yields

\[
\sin^2 \beta = 0.34 \pm 0.20 \text{(stat)} \pm 0.05 \text{(syst)}.
\]

The decay asymmetry \(A_{CP} \) as a function of \(\Delta t \) and the log likelihood as a function of \(\sin^2 \beta \) are shown in Fig. 2. If \(|\lambda| \) is allowed to float in the fit, the value obtained is consistent with 1 and there is no significant difference in the value of \(-\eta_{\tau} \text{Im}\lambda/|\lambda| \) (identified with \(\sin^2 \beta \) in the standard model) and our quoted result. Repeating the fit with all parameters fixed to their determined values except \(\sin^2 \beta \), we find that a total contribution of \(\pm 0.02 \) to the error on \(\sin^2 \beta \) is due to the combined statistical uncertainties in mistag rates, \(\Delta t \) resolution, and background parameters.

The dominant sources of systematic error are the assumed parametrization of the \(\Delta t \) resolution function (0.04), due in part to residual uncertainties in the SVT alignment, and uncertainties in the level, composition, and \(CP \) asymmetry of the background in the selected \(CP \) events (0.02). The systematic errors from uncertainties in \(\Delta m_{B^0} \) and \(\tau_{B^0} \) and from the parametrization of the background in the selected \(B_{\text{mix}} \) sample are found to be negligible. An increase of \(0.02 \text{ h ps}^{-1} \) in the assumed value for \(\Delta m_{B^0} \) decreases \(\sin^2 \beta \) by 0.015.

The large sample of reconstructed events allows a number of consistency checks, including separation of the data by decay mode, tagging category, and \(B_{\text{tag}} \) flavor. The results of fits to these subsamples are shown in Table I for the high-purity \(K^0_S \) events. Table I also shows results of fits with the samples of non-\(CP \) decay modes, where no statistically significant \(CP \) asymmetry is found.

Our measurement of \(\sin^2 \beta \) is consistent with, but improves substantially on the precision of, previous determinations [9]. The central value is consistent with the range implied by measurements and theoretical estimates of the magnitudes of CKM matrix elements [10]; it is also consistent with no \(CP \) asymmetry at the 1.7\(\sigma \) level.

We thank our PEP-II colleagues for their extraordinary achievement in reaching design luminosity and high
FIG. 2. The raw asymmetry in the number of B^0 and \bar{B}^0 tags in the signal region, $(N_{B^0} - N_{\bar{B}^0})/(N_{B^0} + N_{\bar{B}^0})$, with asymmetric binomial errors, as a function of Δt for (a) the $J/\psi K^0_S$ and $\eta_f = -1$ and (b) the $J/\psi K^0_S$ mode ($\eta_f = +1$). The solid curves represent the time-dependent asymmetries determined for the central values of $\sin^2\beta$ from the fits for these samples. Eight events that lie outside the plotted interval were also used in the fits. The probability of obtaining a lower likelihood, evaluated using a Monte Carlo technique, is 60%.

(c) Variation of the log likelihood as a function of $\sin^2\beta$ for the modes containing K^0_S (dashed curve), the $J/\psi K^0_S$ mode (dotted curve), and the entire sample (solid curve). For the latter, solid lines indicate the central value and values of the log likelihood corresponding to 1 statistical standard deviation.

reliability in a remarkably short time. The collaborating institutions thank SLAC for its support and the kind hospitality extended to them. This work has been supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Institute of High Energy Physics (China), Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung (Germany), Istituto Nazionale di Fisica Nucleare (Italy), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from the Swiss National Foundation, the A.P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

*Also with Università di Perugia, Perugia, Italy.
†Also with Università della Basilicata, Potenza, Italy.
‡Deceased.

[6] Throughout this paper, flavor-eigenstate decay modes imply also their charge conjugate.