Measurement of the B-0 and B+ meson lifetimes with fully reconstructed hadronic final states

B Aubert
D Boutigny
JM Gaillard
A Hicheur
Y Karyotakis, et al.
Measurement of the B^0 and B^+ Meson Lifetimes with Fully Reconstructed Hadronic Final States

201803-1 0031-9007/1/87(20)/201803(7)/S15.00 © 2001 The American Physical Society 201803-1
The B^0 and B^+ meson lifetimes have been measured in e^+e^- annihilation data collected in 1999 and 2000 with the BABAR detector at center-of-mass energies near the $Y(4S)$ resonance. Events are selected in which one B meson is fully reconstructed in a hadronic final state while the second B meson is reconstructed inclusively. A combined fit to the B^0 and the B^+ decay time difference distributions yields $\tau_{B^0} = 1.546 \pm 0.032 \text{(stat)} \pm 0.022 \text{(syst)}$ ps, $\tau_{B^+} = 1.673 \pm 0.032 \text{(stat)} \pm 0.023 \text{(syst)}$ ps, and $\tau_{B^+}/\tau_{B^0} = 1.082 \pm 0.026 \text{(stat)} \pm 0.012 \text{(syst)}$.

DOI: 10.1103/PhysRevLett.87.201803

PACS numbers: 13.25.Hw, 12.39.Hg
The spectator quark model predicts that the two charge states of a meson with one heavy quark $Q (Q u$ and $Q d$) have the same lifetime. Deviations from this simple picture are expected to be proportional to $1/m_u^2$ [1,2]. Therefore, any lifetime differences are anticipated to be much smaller for bottom than for charm mesons. Various models [1,2] predict the ratio of the B^+ and B^0 meson [3] lifetimes to differ by up to 10% from unity. At present, this ratio is measured to be $\tau_{B^+}/\tau_{B^0} = 1.062 \pm 0.029$ [4], with the most precise values obtained by experiments operating near the Z and at hadron colliders.

The lifetime measurements described here are based on a sample of approximately 23 million $B^0 \bar{B}^0$ pairs recorded near the $Y(4S)$ resonance with the BABAR detector at the Stanford Linear Accelerator Center. The PEP-II asymmetric-energy e^+e^- collider produces B^+B^- and $B^0\bar{B}^0$ pairs moving along the beam axis (z direction) with a nominal Lorentz boost of $\beta\gamma = 0.56$. Hence, on average, the two B decay vertices are separated by $\langle|\Delta z|\rangle = \beta\gamma y_f^B \epsilon t = 270 \mu m$, where t is the B lifetime and y_f^B is the B Lorentz boost factor to the $Y(4S)$ rest frame. This separation allows precision B lifetime measurements at the $Y(4S)$, with different systematic error sources from previously published results.

In this analysis, one of the B mesons in an event, denoted B_{rec}, is fully reconstructed in a variety of two-body charm and charmonium final states. The decay point of the other B in the event, B_{opp}, is reconstructed inclusively. The probability density of the (signed) difference $\Delta t = t_{rec} - t_{opp}$ between the proper decay times of the B mesons is given by $g(\Delta t | \tau) = e^{-|\Delta t|/\tau}/2\tau$. The time interval Δt between the two B decays is determined from Δz, including an event-by-event correction for the direction of the B mesons with respect to the z direction in the $Y(4S)$ frame. The challenge of the measurement is to disentangle the resolution in Δz, 190 μm rms, from the effects of the B lifetime, since both contribute to the width of the Δt distribution. In the absence of background, the measured Δt distribution is described by the probability density function (PDF)

$$G(\Delta t, \sigma | \tau, \dot{a}) = \int_{-\infty}^{+\infty} g(\Delta t' | \tau) R(\Delta t - \Delta t', \sigma | \dot{a}) \times d(\Delta t'),$$

where R is the Δt resolution function with parameters \dot{a}, and σ is the event-by-event error on Δt calculated from the vertex fits. An unbinned maximum likelihood fit is used to extract the B^0 and B^+ lifetimes from the Δt distributions for $B^0\bar{B}^0$ and B^+B^- events.

The BABAR detector is described in detail elsewhere [5]. Charged particle trajectories are measured by a combination of a silicon vertex tracker (SVT) and a drift chamber (DCH) in a 1.5-T solenoidal field. For 1 GeV/c tracks, the impact parameter resolution is about 60 μm in both the z and transverse directions. Photons and electrons are detected in the CsI(Tl) electromagnetic calorimeter (EMC). A ring imaging Cherenkov detector, the DIRC, is used for charged hadron identification. The DCH and SVT also provide ionization measurements, dE/dx, for particle identification. The instrumented flux return (IFR) is segmented and contains resistive plate chambers to identify muons. Electron candidates are required to have a ratio of EMC energy to track momentum, an EMC cluster shape, DCH dE/dx, and DIRC Cherenkov angle consistent with the electron hypothesis. Muon candidates are required to have IFR hits consistent with the extrapolated DCH track, and an IFR penetration in interaction lengths and an EMC energy deposit consistent with the muon hypothesis.

B^0 and B^+ mesons are reconstructed in a sample of multihadron events in the modes $B^0 \rightarrow D(\pi^+)\pi^+$, $D(\rho^+)\pi^+$, $D(\pi^-)\pi^+$, $J/\psi K^{*\pm}$, and $B^+ \rightarrow D(\pi^+)\pi^+$, $J/\psi K^+\pi^+, \psi(2S)K^+\pi^-$. Multihadron events must have a minimum of three reconstructed charged tracks, a total charged and neutral energy greater than 4.5 GeV, and an event vertex within 0.5 cm of the beam spot [5] center in xy and within 6 cm in z.

For π^0 candidates, pairs of photons in the EMC, each with more than 30 MeV of energy, are selected if their invariant mass is within 20 MeV/c^2 of the π^0 mass [4] and their total energy exceeds 200 MeV (100 MeV for the soft π^0 in D^* decays). A mass constraint is applied to selected candidates for use in the subsequent reconstruction chain.

$K_S^0 \rightarrow \pi^+\pi^-$ candidates are required to have an invariant mass between 462 and 534 MeV/c^2. A geometrical vertex fit with χ^2 probability above 0.1% is required, and the transverse flight distance from the event vertex must be greater than 0.2 cm.

D^0 candidates are reconstructed in the decay channels $K^+\pi^-, K^+\pi^-\pi^0$, $K^+\pi^+\pi^-\pi^-$, and $K^0_S\pi^+\pi^-$ and D candidates in the decay channels $K^+\pi^-\pi^0$ and $K^0_S\pi^-\pi^0$. Kaons from D^- decays and charged daughters from $D^0 \rightarrow K^+\pi^-$ are required to have momenta greater than 200 MeV/c. All other charged D daughters are required to have momenta greater than 150 MeV/c. For $D^0 \rightarrow K^+\pi^-\pi^0$, we only reconstruct the dominant resonant mode, $D^0 \rightarrow K^+\rho^-$, followed by $\rho^- \rightarrow \pi^-\pi^0$. The $\pi^-\pi^0$ mass is required to lie within 150 MeV/c^2 of the ρ mass [4] and the angle between the π^- and D^0 in the ρ rest frame, $\theta_{D\pi}$, must satisfy $|\cos\theta_{D\pi}| > 0.4$. All D^0 and D candidates are required to have a momentum greater than 1.3 GeV/c in the $Y(4S)$ frame, an invariant mass within 3σ of the nominal value [4] and a geometrical vertex fit with a χ^2 probability greater than 0.1%. A mass constraint is applied to selected D candidates.

Charged and neutral D^* candidates are formed by combining a D^0 with a π^- or π^0 of momentum less than 450 MeV/c in the $Y(4S)$ frame. The soft π^- is constrained to originate from the beam spot when the D^* vertex is fit. After the mass constraint to the D^0 daughter, D^* candidates with $m(D^*) < 2.5 \sigma$ (4σ) of the nominal mass [4] for D^{*+} (D^{*0}) are selected.

Candidates for leptonic decays of charmonium mesons must have at least one decay product positively identified
as an electron or a muon. If it traverses the calorimeter, the second muon must be consistent with a minimum ionizing particle. J/ψ candidates are required to lie in the invariant mass interval 2.95 (3.06) to 3.14 GeV/c2 for the $e^+e^- (\mu^+\mu^-)$ channel. The $e^+e^- (\mu^+\mu^-)$ invariant mass of $\psi(2S)$ candidates must be between 3.44 (3.64) and 3.74 GeV/c2. A mass constraint is applied to selected candidates. $\psi(2S) \rightarrow J/\psi \pi^+\pi^-$ candidates are selected if the $\pi^+\pi^-$ mass is between 0.4 and 0.6 GeV/c2 and the $\psi(2S)$ mass is within 15 MeV/c2 of the nominal value [4]. All $\psi(2S)$ candidates must have momenta between 1.0 and 1.6 GeV/c in the $Y(4S)$ rest frame.

B candidates are formed by combining a $D^{(*)0}$, J/ψ, or $\psi(2S)$ candidate with a π^+, ρ^+, $\bar{a}_1^+(a_1^{\prime}\rightarrow \pi^+\pi^-\pi^0)$, $K^{*0}(K^{*0}\rightarrow K^+\pi^-)$, or K^+ candidate that has a mass larger than 500 MeV/c in the $Y(4S)$ frame. For $B^{0}\rightarrow D^{(*)+}\rho^+$, the ρ^+ decay must have an energy greater than 300 MeV. For $B^{+}\rightarrow D^{(*)0}\bar{a}_1^+$, the a_1^+ must have an invariant mass between 1.0 and 1.6 GeV/c2, and a χ^2 probability for a vertex fit to the a_1^+ candidate greater than 0.1%. Positive identification of kaons is required for modes with higher background, such as $B^{+}\rightarrow D^{(*)0}\pi^+$ with $D^{0}\rightarrow K^+\pi^-\pi^0$. Continuous $e^+e^-\rightarrow q\bar{q}$ background is suppressed by requiring the normalized second Fox-Wolfram moment [6] for the event to be less than 0.5. Backgrounds are further reduced by a mode-dependent restriction on the angle between the B_{rec} and B_{opp} thrust axes in the $Y(4S)$ frame.

B candidates are identified on the basis of the difference ΔE between the reconstructed energy and the beam energy $\sqrt{s}/2$ in the $Y(4S)$ frame, and the beam-energy-substituted mass m_{ES} calculated from $\sqrt{s}/2$ and the reconstructed momentum of the candidate. We require $m_{ES} > 5.2$ GeV/c2 and $|\Delta E| < 3\sigma_{\Delta E}$, using the measured resolution $\sigma_{\Delta E}$ for each decay mode (10 to 30 MeV).

The decay position of the B_{rec} candidate is determined by requiring convergence of a vertex fit, where in addition the masses of the D mesons are constrained to their nominal values [4]. Decay mode-dependent precisions between 60 and 100 μm rms are achieved for the B_{rec} decay position both in z and in the transverse plane. The vertex of the B_{opp} is determined from all tracks in the event after removing those associated with the B_{rec} candidate. Tracks from photon conversion candidates are rejected. Daughter tracks from K_S^0 or Λ candidates are replaced by the neutral parent. An additional constraint is imposed on the B_{opp} vertex using the B_{rec} vertex and three-momentum, the beam spot position, and the average $Y(4S)$ momentum. To reduce the bias in the forward z direction from charm decay tracks, the track with the largest contribution to the vertex χ^2, if above 6, is removed.

The background Δt distribution, B, for each B species is modeled by the sum of a prompt component and a lifetime and the fit iterated until no track fails this requirement. Events are required to have at least 2 tracks remaining in the B_{opp} vertex, an error on Δz smaller than 400 μm and $|\Delta z| < 3000$ μm. The precision achieved on Δz, 190 μm rms, is dominated by the resolution on the B_{opp} vertex. A remaining bias of -35μm due to charm decays on the B_{opp} side is observed. We require $|\Delta t| < 18$ ps and find 6018 ± 70 B^0 and 6298 ± 63 B^+ signal events in a $\pm 2\sigma$ ($\sigma = 2.7$ and 2.6 MeV/c2, respectively) window around the m_{ES} peak above a small background ($\approx 10\%$). The results of a fit with a Gaussian signal distribution and an ARGUS background function [7] are superimposed on the m_{ES} distribution of the final sample in Fig. 1.

As already noted, the modeling of the resolution function R is a crucial element of the B lifetime measurements. Studies with both Monte Carlo simulation and data show that the sum of a zero-mean Gaussian distribution and a decay exponential provides a good trade-off between different sources of uncertainties:

$$R(\delta_i, \sigma | \hat{a} = [h, s, k]) = h \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\delta_i^2}{2\sigma^2}\right) + \int_{-\infty}^{0} \frac{1 - h}{\kappa\sigma} \exp\left(-\frac{\delta_i}{\kappa\sigma}\right) \times \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{\delta_i^2}{2\sigma^2}\right) d(\delta_i),$$

(2)

where δ_i is the difference between the measured and true Δt values. The model parameters \hat{a} are the fraction h in the core Gaussian component, a scale factor s for the per-event errors σ, and the factor κ in the effective time constant $\kappa\sigma$ of the exponential that accounts for the effect of charm decays. Monte Carlo studies show that the parameters \hat{a} obtained for different decay modes are compatible, as expected for Δt resolution dominated by the B_{opp} vertex. Since the B_{opp} decays to a different mixture of D^- and D^0 mesons, the resolution functions differ slightly for B^0 and B^+ mesons, but at an insignificant level given the current data sample. Hence a single set of resolution function parameters is used for both B^0 and B^+ in the lifetime fits, and a small correction is ultimately applied to the results. While the resolution function R describes almost all events, incorrectly measured outlier events are modeled separately as discussed below.

The unbinned maximum likelihood fit for the B lifetimes uses all events with $m_{ES} > 5.2$ GeV/c2. The probability p_{i}^{sig} for event i to be signal with Δt distribution G, defined in Eq. (1), is estimated from the m_{ES} fit (Fig. 1) and the m_{ES} value of the B_{rec} candidate. Each event i then samples a PDF that includes signal, background, and outlier components:

$$F(\Delta t_i, \sigma_i, p_{i}^{\text{sig}} | \tau; \hat{b}, f_{\text{out}, \text{bkg}}, f_{\text{out}, \text{sig}}) = p_{i}^{\text{sig}} [(1 - f_{\text{out}, \text{bkg}}) G(\Delta t_i, \sigma_i | \tau, \hat{b}) + f_{\text{out}, \text{bkg}} B(\Delta t_i | \hat{b}) + f_{\text{out}, \text{sig}} O(\Delta t_i)].$$

(3)
The fraction of nonprompt background, its effective lifetime, and the background resolution parameters are determined separately for charged and neutral B mesons. Signal and background outlier events have an assumed Δt behavior O given by a Gaussian distribution with zero mean and a fixed 10 ps width. The fractions of outliers in signal and background are determined separately in the lifetime fit.

Since the same resolution function is used for neutral and charged B mesons, the fitting procedure maximizes the log-likelihood function $\ln L$ formed from the sum of two terms, one for each B meson species, with common parameters \hat{a} for R:

$$\ln L = \sum_{i+} \ln \left[\mathcal{F}(\Delta t_{i+}, \sigma_{i+}, \tau_B^{i+}; \hat{a}, \hat{b}^+, f_{\text{out}}^+, f_{\text{out}}^b, f_{\text{bkg}}^+, f_{\text{bkg}}^b) \right]$$

$$+ \sum_{i0} \ln \left[\mathcal{F}(\Delta t_{i0}, \sigma_{i0}, \tau_B^{i0}; \hat{a}, \hat{b}_0, f_{\text{out}}^0, f_{\text{out}}^b, f_{\text{bkg}}^0, f_{\text{bkg}}^b) \right].$$

The likelihood fit involves 19 free parameters. The parameter τ_B^{i0} is replaced with $\tau_B^{i+} = r \cdot \tau_B^{i0}$ to estimate the statistical error on the lifetime ratio r. The lifetime values were kept hidden until the event selection, Δt reconstruction method, and fitting procedures were finalized and the systematic errors were determined.

The fit results, after small corrections discussed below, are $\tau_B^{i0} = 1.546 \pm 0.032$ ps, $\tau_B^{i+} = 1.673 \pm 0.032$ ps, and $\tau_B^{i+}/\tau_B^{i0} = 1.082 \pm 0.026$, where the errors are statistical only. The resolution parameters \hat{a} ($h = 0.69 \pm 0.07$, $s = 1.21 \pm 0.07$, and $\kappa = 1.04 \pm 0.24$) are consistent with those found in a Monte Carlo simulation that includes detector alignment effects. The fitted outlier fractions in the B^+ and B^0 signals are both $0.2^{+0.3}_{-0.2}$%. Figure 2 shows the results of the fit superimposed on the observed Δt distributions for B^0 and B^+ events within 2 standard deviations of the B mass in m_{ES}.

Table I summarizes the systematic uncertainties on the lifetime results. The full analysis chain, including event reconstruction and selection, has been tested with Monte Carlo simulation with no significant bias observed. The statistical precision of this test is assigned as a systematic error. The resolution parameters \hat{a}, determined from the data by the fit, contribute ± 0.017 ps in quadrature to the statistical error of the individual lifetime results. Thus, a large part of the Δt resolution uncertainty is included in the statistical error. Residual systematic uncertainties are attributed to limited flexibility of the resolution model, which are estimated by comparing results with different parametrizations. We apply corrections from a high-statistics Monte Carlo sample for the small positive (negative) bias on the B^0 (B^+) lifetime due to differences, discussed above, in the Δt resolution functions for B^0 and B^+ mesons. The size of the correction is assigned as a systematic error. A small systematic error results from uncertainties on the beam spot position and vertical size, and the B_{rec} momentum vector, which are used to constrain the B_{opp} vertex. The lifetime results are stable under variation of the assumed width for the
TABLE I. Summary of the systematic uncertainties.

<table>
<thead>
<tr>
<th>Effect</th>
<th>(\delta(\tau_{B^0})) (ps)</th>
<th>(\delta(\tau_{B^+})) (ps)</th>
<th>(\delta(\tau_{B^+}/\tau_{B^0}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC statistics</td>
<td>0.009</td>
<td>0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>(\mathcal{R}) parametrization</td>
<td>0.008</td>
<td>0.004</td>
<td>0.003</td>
</tr>
<tr>
<td>Same (\mathcal{R}) for (B^0) and (B^+)</td>
<td>0.004</td>
<td>0.005</td>
<td>0.006</td>
</tr>
<tr>
<td>Beam spot, (p_{B_{rec}})</td>
<td>0.002</td>
<td>0.002</td>
<td>Canceled</td>
</tr>
<tr>
<td>(\Delta t) outliers</td>
<td>0.011</td>
<td>0.011</td>
<td>0.005</td>
</tr>
<tr>
<td>SVT alignment</td>
<td>0.008</td>
<td>0.008</td>
<td>Canceled</td>
</tr>
<tr>
<td>(z) scale</td>
<td>0.008</td>
<td>0.008</td>
<td>Canceled</td>
</tr>
<tr>
<td>(\Delta z) to (\Delta t) conversion</td>
<td>0.006</td>
<td>0.006</td>
<td>Canceled</td>
</tr>
<tr>
<td>Signal probability</td>
<td>0.003</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Background modeling</td>
<td>0.005</td>
<td>0.011</td>
<td>0.005</td>
</tr>
<tr>
<td>Total in quadrature</td>
<td>0.022</td>
<td>0.023</td>
<td>0.012</td>
</tr>
</tbody>
</table>

\(\Delta t \) outlier PDF above 10 ps. To investigate narrower shapes, which are more signal-like, thousands of experiments with sets of fixed values for the outlier width and mean were simulated and subjected to the nominal lifetime fit. The largest observed bias is taken as the outlier systematic uncertainty. Additional systematic uncertainties are due to the SVT alignment. The \(z \) length scale was determined to better than 0.5% from secondary interactions in a beam pipe section of known length. Approximations in the calculation of \(\Delta t \) from \(\Delta z \) and the uncertainty on the boost lead to small systematic errors. The errors on the \(m_{ES} \) fit parameters are used to determine the uncertainty on \(p_{\text{sig}} \) and the corresponding systematic error. The main background uncertainty is due to changes in the background composition as a function of \(m_{ES} \). An additional contribution arises from a 1%–2% \(B^0 \) contamination of the \(B^+ \) signal sample and vice versa. We use Monte Carlo simulation to correct for these background effects and assign the sum in quadrature of the corrections as a systematic uncertainty.

In summary, the \(B^0 \) and \(B^+ \) meson lifetimes and their ratio have been determined to be

\[
\begin{align*}
\tau_{B^0} & = 1.546 \pm 0.032(\text{stat}) \pm 0.022(\text{syst}) \text{ ps}, \\
\tau_{B^+} & = 1.673 \pm 0.032(\text{stat}) \pm 0.023(\text{syst}) \text{ ps}, \quad \text{and} \\
\tau_{B^+}/\tau_{B^0} & = 1.082 \pm 0.026(\text{stat}) \pm 0.012(\text{syst}).
\end{align*}
\]

These are the most precise measurements to date, and they are consistent with the current world averages.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also with Università di Perugia, Perugia, Italy.
†Also with Università della Basilicata, Potenza, Italy.
[3] Throughout this paper, references to a hadron or to a decay reaction also imply their charge conjugate.