Community Impacts of Decision Modeling for Foreclosed Redevelopment

Michael P Johnson, Jr., *University of Massachusetts - Boston*
Alvine Sangang, *University of Massachusetts Boston*
Buki Usidame, *University of Massachusetts Boston*
COMMUNITY IMPACTS OF DECISION MODELING FOR FORECLOSED REDEVELOPMENT

Michael P. Johnson, PhD
Alvine Sangang
Omobukola Usidame
Department of Public Policy and Public Affairs
University of Massachusetts Boston

INFORMS Fall National Conference
San Francisco
November 10, 2014
Introduction

- Research goal: Apply decision modeling to assist community-based organizations engaged in foreclosure response
- Purpose of talk: Generate range of alternative residential property acquisition strategies based on policy impact metrics and demonstrate social benefits of decision-assisted foreclosure response as compared to current practice
- Current project:
 - *Decision Science for Housing and Community Development: Local Evidence-Based Responses to Foreclosures* (with Jeffrey Keisler, Senay Solak, David Turcotte, Armagan Bayram and Rachel Drew)
POLICY, PLANNING AND ANALYTICS PRELIMINARIES
The foreclosed housing crisis is a primary cause of community distress

Aggregate effects:
- Over 4 million homes lost to foreclosure
- 30% decline in house prices
- $7 trillion in home equity lost

Socio-geographic concentrations:
- High-priced areas that overbuilt
- Economically struggling cities with high rates of subprime lending
- Lower-income and minority households

Social and economic consequences of foreclosures:
- Residential stability
- Personal well-being
- Spill-over effects

(Sources: Joint Center for Housing Studies 2013; Immergluck 2010; McKernan et al. 2014)
Many regions also face long-term social and economic decline

• Symptoms:
 - 30 cities with 500,000 or more residents have lost 8.61% of their populations on average
 - Number of vacant housing units has increased by 44%
 - Eight cities facing population declines have incurred $23 billion in debt before declaring bankruptcy

• Causes:
 - Urban deindustrialization
 - Federal policy supporting out-migration to suburbs
 - Foreclosed housing crisis and the Great Recession

• Traditional remedies:
 - Investments in housing, employment and physical infrastructure

(Sources: Popper and Popper 2002, Hollander et al. 2009)
In working housing markets, consider a range of conventional responses

Which responses may be most appropriate for which neighborhoods at which times?

What is an optimal strategy associated with a particular response?

Source: foreclosure-response.org (2013a)
If markets are weak, consider alternative land uses

Which options are most appropriate for which parcels at what time? How to balance multiple objectives?

Source: Baltimore City Department of Planning (2012)
‘Data analytics’ can help design innovative responses

• Purpose of analytics is to derive knowledge and actionable insights from data

• Analytic tools are applied to datasets to determine
 • What has happened (descriptive analytics)
 • What is likely to happen (predictive analytics)
 • What course of action to follow (prescriptive analytics)

• Community-focused data analytics is different from applications to large and/or for-profit organizations
 • Values-driven
 • Collaborative
 • Inductive
 • Multi- and mixed-methods
 • Appropriate use of resources and capacity

(Source: Johnson 2014)
Multiple types of data and technologies can meet community organization needs

- Visualization-based technologies
- Database-driven technologies
- Model-driven technologies

Source: Johnson (2012)

Source: http://www.policymap.com/
DATA ANALYTICS FOR FORECLOSURE RESPONSE
Example: Foreclosure responses depend on the level of foreclosure risk and housing market strength

<table>
<thead>
<tr>
<th>MARKET STRENGTH</th>
<th>FORECLOSURE IMPACT RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. Actual high foreclosure density</td>
</tr>
<tr>
<td>1. Strong</td>
<td>Facilitate rapid sales to sustainable owners, low/no subsidy</td>
</tr>
<tr>
<td>2. Intermediate</td>
<td>High payoff/priority, rehab and rapid sale to sustainable owners, target subsidies, neighborhood maintenance</td>
</tr>
<tr>
<td>3. Weak</td>
<td>More emphasis on securing/demolishing, land banking to hold until market rebound</td>
</tr>
</tbody>
</table>

Which neighborhoods should receive what kinds of services?

Source: foreclosure-response.org (2013b)
Census tracts can be classified according to foreclosure risk and housing market strength

<table>
<thead>
<tr>
<th>Market Strength</th>
<th>Foreclosure Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
</tr>
</tbody>
</table>

How can we analyze data for specific cities or neighborhoods?

Source: foreclosure-response.org (2014c)
We can scan on-line maps to view neighborhoods one variable at a time…

Source: http://www.foreclosure-response.org/maps_and_data/lisc_maps.html
Or we can develop city-level tabulations to identify concentrations of risk

<table>
<thead>
<tr>
<th>Boston, MA</th>
<th>10</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>4</th>
<th>2</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Highest</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreclosure Risk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Source: Data from foreclosure-response.org (2014c); authors’ calculations |

But where are these tracts actually located?
Foreclosure risk and housing market strength are clearly concentrated in specific portions of Boston…

Source: Data from foreclosure-response.org (2014c); created using ArcGIS 10 (ESRI, Inc. 2011)
Now we can decide what kinds of responses may be best-suited for specific geographies, and justify our decisions with data.

Source: Data from foreclosure-response.org (2014c); created using ArcGIS 10 (ESRI, Inc. 2011)
We have used data analytics to identify specific interventions at a local level.

<table>
<thead>
<tr>
<th>MARKET STRENGTH</th>
<th>FORECLOSURE IMPACT RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. Actual high foreclosure density</td>
</tr>
<tr>
<td>1. Strong</td>
<td>Facilitate rapid sales to sustainable owners, low/no subsidy</td>
</tr>
<tr>
<td>2. Intermediate</td>
<td>High payoff/priority, rehab and rapid sale to sustainable owners, target subsidies, neighborhood maintenance</td>
</tr>
<tr>
<td>3. Weak</td>
<td>More emphasis on securing/demolishing, land banking to hold until market rebound</td>
</tr>
</tbody>
</table>

Challenge now is to translate qualitative descriptions into specific prescriptions.
Foreclosure response decision model optimizes two social objectives

Index:

\[i = 1, \ldots, N: \text{index of candidate properties for acquisition} \]

Decision variables:

\[x_i = \begin{cases} 1, & \text{if foreclosed property } i \text{ is acquired for redevelopment} \\ 0, & \text{otherwise} \end{cases} \]

Parameters:

- \(S_i \): Estimated strategic value associated with acquisition candidate \(i \)
- \(P_i \): Estimated social value associated with acquisition candidate \(i \)
- \(C_i \): Estimated acquisition cost of acquisition candidate \(i \)
- \(B \): total funds available for purchase of acquisition candidates
- \(N \): total number of units to be acquired
We solve two model variants corresponding to CDC practice

\[\text{Optimize } \{ S(x) = \sum_{i=1}^{n} S_i \cdot x_i; P(x) = \sum_{i=1}^{n} P_i \cdot x_i \} \]

s.t.

\[\sum_{i=1}^{n} C_i \cdot x_i \leq B \]

\[\sum_{i=1}^{n} x_i = N \]

\[x_i \in \{0, 1\}, i = 1, \ldots, n \]

Jointly optimize social objectives

Limit expenditures to budget available

- or -

Acquire only a given number of properties
Model results can be viewed in ‘objective space’ as well as ‘decision space’

Source: Johnson et al. (2014)
DATA ANALYTICS FOR MUNICIPAL SHRINKAGE
Example: Select parcels in declining neighborhoods for re-purposing

<table>
<thead>
<tr>
<th>Land Use or Planning Classification</th>
<th>Metrics</th>
</tr>
</thead>
</table>
| Urban Agriculture | • 0.5 acre or greater
 • Slope < 5%
 • Tree cover cannot exceed 30% of cluster area |
| Stormwater Drainage | • 1/8 acre or greater
 • Slope < 5%
 • Within 20’ of a stormdrain |
| Potential development opportunity | • Housing Market Typology (1/4 mile from ‘Regional Choice’ or ‘Middle Market Choice’)
 • (¼ mile from anchor institutions
 OR
 • ¼ mile from minimum of 2 building permits plan) |
| Blight Elimination | • >50 % vacant
 • Distressed HMT
 • Public Safety ‘hot spots’
 • High visibility blighted areas:
 1. Primary street
 2. Adjacent to public destination |

Source: Johnson and Hollander (2013)
Clusters qualify for a variety of uses

<table>
<thead>
<tr>
<th>Cluster Code</th>
<th>Location</th>
<th>Use/Classification</th>
<th>Number of Clusters that Qualify</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2_1</td>
<td>City Hall</td>
<td>Urban Agriculture</td>
<td>10</td>
</tr>
<tr>
<td>4.3_1</td>
<td>Polk St</td>
<td>Stormwater Drainage</td>
<td>38</td>
</tr>
<tr>
<td>9.1_1</td>
<td>Washington Blvd</td>
<td>Potential Development</td>
<td>23</td>
</tr>
<tr>
<td>2.3_1</td>
<td>Blight</td>
<td>Blight Elimination</td>
<td>7</td>
</tr>
</tbody>
</table>

Total clusters (combined): 118

Source: Johnson and Hollander (2013)
Eligibility sets vary over space

Source: Johnson and Hollander (2013)
Clusters vary widely by size and cost

Source: Johnson and Hollander (2013)
Baltimore Planning decision model is a stylized attempt to generate strategy alternatives

Index and set:
\[i = 1, \ldots, N: \text{index of clusters} \]
\[j \in \{U, S, D, B\}: \text{set of land uses & classification} \]

Decision variables:
\[x_{ij} = \begin{cases} 1, & \text{if cluster } i \text{ is acquired for land use or classification } j \\ 0, & \text{otherwise} \end{cases} \]

Parameters:
\[a_i = \text{size of cluster } i, \text{ in acres} \]
\[c_i = \text{acquisition and demolition cost for cluster } i \]
\[B = \text{acquisition and demolition budget} \]
The model assigns land uses to clusters to optimize multiple planning objectives

\[
\text{Maximize } \{U(x) = \sum_{i=1}^{N} a_i \cdot x_{iU}, S(x) = \sum_{i=1}^{N} a_i \cdot x_{iS}, \\
D(x) = \sum_{i=1}^{N} a_i \cdot x_{iD}, B(x) = \sum_{i=1}^{N} a_i \cdot x_{iB}\}
\]

s.t.

\[
\sum_{i=1}^{N} \sum_{j \in J} c_{ij} \cdot x_{ij} \leq B
\]

\[
\sum_{j \in \{US,D\}} x_{ij} \leq 1, \ i = 1, \ldots, N
\]

\[
x_{iB} \leq \sum_{j \in \{US,D\}} x_{ij}, \ i = 1, \ldots, N
\]

\[
x_{ij} \in \{0, 1\} \forall i, j
\]

- Jointly maximize land area devoted to specific uses
- Budget
- Single land use
- Cannot assign to classification category unless selected for land use
Objective-space results demonstrate wide variance in objective values across problem instances

Source: Johnson and Hollander (2013)
Decision-space results show variation in acquisition and re-purposing decisions
Conclusion

Creative data analytics involves multiple methods and technologies

• Geographic information systems
• Database analysis
• Decision science

…and multiple data types

• Qualitative data, from stakeholder engagement
• Quantitative data, from administrative datasets

...to generate a range of policy alternatives that consider

• Multiple competing objectives and resource constraints
• Practitioner expertise

Best use of these methods may fulfill the promise of community development that is “integrated, broadly collaborative, data-driven, and focused on what works, and entrepreneurial” (Seidman 2012)
Thanks!

Foreclosed housing project book (under development):
http://works.bepress.com/michael_johnson/58

Foreclosed housing project description:
http://umb.libguides.com/foreclosed_housing
Resources

