Maintain, Demolish, Re-purpose: Policy Design for Vacant Land Management using Decision Models

Michael P Johnson, Jr.
Justin Hollander, Tufts University
Alma Halluli, University of Massachusetts Boston

Available at: https://works.bepress.com/michael_johnson/37/
Maintain, Demolish, Re-purpose: Policy Design for Vacant Land Management using Decision Models

Michael Johnson, University of Massachusetts Boston
Justin Hollander, Tufts University
Alma Hallulli, University of Massachusetts Boston

2012 INFORMS National Conference, Phoenix, AZ
October 16, 2012
Policy motivation

- Neighborhoods, cities, regions and countries face sustained economic and population decline, due to lower population growth rates, deindustrialization and sustained disinvestment, and the housing foreclosure crisis.

- Planners increasingly see ‘decline’ as something to plan for: a place may lose population while ensuring a high quality of life and enhanced social value (Delken 2008, Hollander 2010).

- Growth-oriented planning continues to maintain its hegemony over local government decision-making.

Can decision models help planners devise strategies that will maximize the social value of managed decline?
What is shrinkage?

- Smart decline: ‘planning for less, fewer people, fewer buildings, fewer land uses’ (Popper and Popper 2002)
- Reduction in level of public services (Popper and Popper 2002):
 - Fixed assets: closure/consolidation/re-purposing of schools, fire stations, libraries
 - Services: reduced maintenance of infrastructure, outsourcing, furloughs/layoffs
- Transformative investments (Hollander 2010):
 - Subdivision of owner-occupied single family homes into multi-family rentals
 - Demolition of homes
 - Conversion of vacant lots to urban agriculture, parks and community gardens and environmental remediation
What cities and regions face shrinkage?

- Flint, Michigan (Hollander 2010)
- Youngstown, Ohio (Hollander 2009)
- Buffalo, New York (Hollander and Cahill 2011)
- Great Plains region of the Midwest (Popper and Popper 2004)
- Leipzig, Germany (Banzhaf, Kindler and Haase 2007)
- Southwest US and central Florida (Hollander 2012)
What is new about shrinkage?

- Permanence of new economic and social constraints
- Acceptance of need for new land uses
- Managed decline is one of multiple planning/policy strategies for a region, or portions of a region
Key modeling concepts

- **Neighborhood-level investments**
 - Residential-focused investments maintain or enhance existing residential and commercial uses
 - Non-residential-focused investments enable residential and commercial uses to be converted to a variety of passive or recreational uses

- **Growth policies**
 - Smart growth attempts to maintain or increase residential population in a sustainable manner
 - Smart decline seeks to reduce residential population and while preserving overall quality of life
Research questions

- What levels of residential- and non-residential-focused investments in each neighborhood within our study area jointly optimize multiple social objectives?
- What model formulations are associated with smart growth, smart decline or ‘no action’ policies within and across neighborhoods?
Modeling preliminaries

Assumptions

- Different neighborhoods respond differently to residential-focused versus non-residential-focused investments.
- Perceived equity (fairness) can determine political feasibility of planning strategies.
- Neighborhood-level investments may result in economies or diseconomies of scale over space.

Challenges

- Planners may view concerns with equity and neighborhood-level engagement design as incompatible with regional-level and quantitatively-focused decision modeling.
- OR/MS can be seen as confirming (or not questioning) traditional power relationships or notions of knowledge.
Municipal shrinkage planning problem

- **Goal:** Choose investment levels across neighborhoods that support residential and/or non-residential uses

- **Objectives:**
 - Maximize neighborhood satisfaction associated with residential and non-residential investments
 - Maximize clustering of neighborhood investments, to capture economies of scale
 - Maximize the perceived equity, or fairness of a city-wide development plan

- **Constraints:**
 - Limit levels of residential and non-residential investments within and across neighborhoods
How can we model neighborhood satisfaction?

- **Research evidence:**
 - Negative social impacts of proximity to vacant land (Branas et al., 2011)
 - Resident opinions on neighborhood quality are heterogeneous and not synonymous with growing cities (Hollander 2011)

- **Assumptions:**
 - Neighborhood satisfaction is
 - Salient to residents and non-residents
 - Associated with quality of life and level of neighborhood investments
 - Derived from residential-focused and non-residential-focused investments
 - Neighborhoods respond differently to investments:
 - A *high-impact* neighborhood shows increasing returns to scale
 - A *low-impact* neighborhood shows decreasing returns to scale
 - A *moderate-impact* neighborhood shows constant returns to scale
Neighborhood satisfaction functions

- Model parameters:
 - A_i = index of neighborhood attractiveness
 - r_i = level of residential-focused investment
 - n_i = level of non-residential-focused investment
 - x = scale factor for residential-focused investments
 - y = scale factor for non-residential-focused investments

- Residential-oriented neighborhood satisfaction function:
 \[S^r_i = f_i(r_i; A_i) \equiv A_i \cdot r_i^x \]

- Non-residential-oriented neighborhood satisfaction function:
 \[S^n_i = g_i(n_i, A_i) \equiv \frac{1}{A_i} \cdot n_i^y \]

where:
- x (y) = 1 for moderate impact neighborhoods
- x (y) > 1 for high impact neighborhoods
- x (y) < 1 for low impact neighborhoods
Complete model

Objectives:
Max

\[
S(r, n) = \left(\frac{1}{A_i} \right) \cdot r_i^x + A_i \cdot n_i^y
\]

\[
C(y) = \sum_{i=1}^{I} \sum_{j=1}^{J} y_{i,j}
\]

\[
E_1(r) = \min_{i=1,2,...,I} \left\{ \frac{r_i}{B_i^r} \right\}
\]

\[
E_2(n) = \min_{i=1,2,...,I} \left\{ \frac{n_i}{B_i^n} \right\}
\]

Constraints:

\[
r_i \leq B_i^r \quad \forall i
\]

\[
n_i \leq B_i^n \quad \forall i
\]

\[
\sum_{i=1}^{I} r_i \leq B^r
\]

\[
\sum_{i=1}^{I} n_i \leq B^n
\]

\[
\max(B^r, B^n) \leq \sum_{i=1}^{I} (r_i + n_i) \leq B^r + B^n
\]

\[
y_{ij} \leq \frac{r_i + n_i}{d_{ij}} \quad \forall i, j
\]
MSPP description and solution approach

- Non-linear multi-objective math optimization problem
- Generate approximation to Pareto frontier
 - Initially: weighting method (Cohon 1978)
 - Generally: contemporary methods (Collette and Siarry 2002; Ehrgott 2005; Ehrgott and Gandibleux 2002; Miettinen 1999)
- Classify neighborhood investment strategy \(\{r_i^*, n_i^* \} \) as:
 - Smart growth policy if \(r_i^* > n_i^* \),
 - Smart decline policy if \(n_i^* > r_i^* \),
 - No-action policy otherwise
- Similar definitions apply for study area
Case study

- Goal: apply municipal shrinkage planning problem to real city

- Candidates:
 - MA ‘gateway cities’
 - ‘Great’ cities
 - Cities traditionally focus of smart decline scholarship

- Method:
 - Identify metrics of distress/decline (cf Wolff 2009)
 - Select candidates with greatest number of distress measures
MA gateway cities

<table>
<thead>
<tr>
<th>City</th>
<th>% Change in population 1990-2000</th>
<th>% Change in population 2000-2010</th>
<th>Change in housing vacancy rate 2000 - 2010</th>
<th>Change in poverty rate 2000 - 2010</th>
<th>% Change in civilian employed 2000 - 2010</th>
<th>Change in unemployment rate 2000 - 2010</th>
<th>Distress in how many categories?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brockton</td>
<td>1.61%</td>
<td>-0.52%</td>
<td>4.8</td>
<td>0.7</td>
<td>0.3</td>
<td>5.4</td>
<td>2</td>
</tr>
<tr>
<td>Fall River</td>
<td>-0.83%</td>
<td>-3.35%</td>
<td>6.1</td>
<td>4.6</td>
<td>-3.1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Fitchburg</td>
<td>-5.35%</td>
<td>3.11%</td>
<td>8.9</td>
<td>2.9</td>
<td>0.9</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Haverhill</td>
<td>12.81%</td>
<td>3.24%</td>
<td>4.1</td>
<td>1.4</td>
<td>-0.9</td>
<td>3.7</td>
<td>0</td>
</tr>
<tr>
<td>Holyoke</td>
<td>-9.70%</td>
<td>0.11%</td>
<td>-2.5</td>
<td>3.6</td>
<td>-2.5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lawrence</td>
<td>2.55%</td>
<td>6.02%</td>
<td>3</td>
<td>3.4</td>
<td>5</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>Lowell</td>
<td>1.64%</td>
<td>1.29%</td>
<td>6.2</td>
<td>0.9</td>
<td>0.4</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>New Bedford</td>
<td>-6.56%</td>
<td>1.39%</td>
<td>3.1</td>
<td>2.5</td>
<td>2.7</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>Pittsfield</td>
<td>-6.18%</td>
<td>-2.31%</td>
<td>0.5</td>
<td>2.8</td>
<td>0.1</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Springfield</td>
<td>-3.22%</td>
<td>0.64%</td>
<td>4.7</td>
<td>2.7</td>
<td>-4.3</td>
<td>4.1</td>
<td>2</td>
</tr>
<tr>
<td>Worcester</td>
<td>1.67%</td>
<td>4.86%</td>
<td>5.9</td>
<td>0.2</td>
<td>0</td>
<td>2.9</td>
<td>0</td>
</tr>
</tbody>
</table>
Selected large cities

<table>
<thead>
<tr>
<th>City</th>
<th>% Change in population 1990-2000</th>
<th>% Change in population 2000-2010</th>
<th>Change in housing vacancy rate 2000 - 2010</th>
<th>Change in poverty rate 2000 - 2010</th>
<th>% Change in civilian employed 2000 - 2010</th>
<th>Change in unemployment rate 2000 - 2010</th>
<th>Distress in how many categories?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baltimore</td>
<td>-13.03%</td>
<td>-4.64%</td>
<td>5.7</td>
<td>1.2</td>
<td>2</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>Boston</td>
<td>2.52%</td>
<td>4.83%</td>
<td>4.5</td>
<td>2.3</td>
<td>1.1</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td>Detroit</td>
<td>-8.06%</td>
<td>-24.97%</td>
<td>18.9</td>
<td>10.6</td>
<td>-11.6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Las Vegas</td>
<td>46.01%</td>
<td>22.01%</td>
<td>9.6</td>
<td>3.4</td>
<td>-3.2</td>
<td>5.2</td>
<td>2</td>
</tr>
<tr>
<td>Albuquerque</td>
<td>14.24%</td>
<td>21.68%</td>
<td>-0.7</td>
<td>4.6</td>
<td>-1.2</td>
<td>1.5</td>
<td>0</td>
</tr>
<tr>
<td>New York City</td>
<td>8.56%</td>
<td>2.08%</td>
<td>4.2</td>
<td>-1.5</td>
<td>3.6</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>Charlotte</td>
<td>26.79%</td>
<td>35.24%</td>
<td>4.8</td>
<td>5.9</td>
<td>-5.8</td>
<td>5.5</td>
<td>3</td>
</tr>
<tr>
<td>Columbus</td>
<td>11.04%</td>
<td>10.62%</td>
<td>6</td>
<td>7.3</td>
<td>-4.8</td>
<td>5.3</td>
<td>3</td>
</tr>
<tr>
<td>Oklahoma City</td>
<td>12.13%</td>
<td>14.59%</td>
<td>2.5</td>
<td>1.1</td>
<td>1.5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Portland</td>
<td>17.35%</td>
<td>10.33%</td>
<td>1.8</td>
<td>4.9</td>
<td>-4</td>
<td>3.9</td>
<td>1</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>-4.48%</td>
<td>0.56%</td>
<td>3.2</td>
<td>2.9</td>
<td>-1.1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Selected ‘shrinkage’ cities

<table>
<thead>
<tr>
<th>City</th>
<th>% Change in population 1990-2000</th>
<th>% Change in population 2000-2010</th>
<th>Change in housing vacancy rate 2000 - 2010</th>
<th>Change in poverty rate 2000 - 2010</th>
<th>% Change in civilian employed 2000 - 2010</th>
<th>Change in unemployment rate 2000 - 2010</th>
<th>Distress in how many categories?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flint, MI</td>
<td>-12.66%</td>
<td>-18.02%</td>
<td>11</td>
<td>10.9</td>
<td>-13.5</td>
<td>5.2</td>
<td>6</td>
</tr>
<tr>
<td>Ashland, KY</td>
<td>-7.47%</td>
<td>-1.35%</td>
<td>1.1</td>
<td>2.4</td>
<td>-0.9</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>Youngstown, OH</td>
<td>-16.71%</td>
<td>-18.34%</td>
<td>5.8</td>
<td>7.3</td>
<td>-3.3</td>
<td>4.5</td>
<td>4</td>
</tr>
<tr>
<td>New Orleans, LA</td>
<td>-2.53%</td>
<td>-29.06%</td>
<td>11.6</td>
<td>-3.1</td>
<td>3.9</td>
<td>2.2</td>
<td>2</td>
</tr>
<tr>
<td>Cleveland, OH</td>
<td>-5.69%</td>
<td>-17.05%</td>
<td>10.1</td>
<td>5.6</td>
<td>-2.6</td>
<td>5.2</td>
<td>3</td>
</tr>
<tr>
<td>Buffalo, NY</td>
<td>-12.12%</td>
<td>-10.71%</td>
<td>2.2</td>
<td>3.9</td>
<td>1.2</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>Dayton, OH</td>
<td>-9.55%</td>
<td>-14.83%</td>
<td>9.4</td>
<td>7.7</td>
<td>-3</td>
<td>5.1</td>
<td>5</td>
</tr>
<tr>
<td>Pittsburgh, PA</td>
<td>-10.56%</td>
<td>-8.63%</td>
<td>4</td>
<td>0.1</td>
<td>3.5</td>
<td>-0.3</td>
<td>0</td>
</tr>
<tr>
<td>Rochester, NY</td>
<td>-5.40%</td>
<td>-4.19%</td>
<td>5</td>
<td>3.2</td>
<td>-3</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>Jackson, MS</td>
<td>11.07%</td>
<td>-5.83%</td>
<td>6.9</td>
<td>2.6</td>
<td>-1.1</td>
<td>1.3</td>
<td>0</td>
</tr>
</tbody>
</table>

Choose Fall River, MA for case study: local, under-studied, generalizeable
Case study city: Fall River, MA

Flat growth in 1990 – 2000 vs. 5% growth in Bristol County
Higher percentage of foreign-born population than county or state
Data development

- Classify neighborhoods by growth potential:
 - Smart growth: population growth > 2% ($x = 1.5; y = 0.5$)
 - Smart decline: decline > 2%; low-income population, no CDBG investments or both ($x = 0.5, y = 1.5$)
 - Other neighborhoods: ($x = y = 1$)

- Total investment budget equals sum of CDBG and HOME programs ($6,795,162$)
 - Residential-focused growth budget = 80% of total
 - Non-residential-focused growth budget = 20% of total

- Neighborhood-level investment limits are a random percentage of each growth budget:
 - Smart growth: [10%, 30%]; [0%, 10%]
 - Smart decline: [0%, 15%]; [15%, 40%]
 - Other neighborhoods: [5%, 20%] for both
Fall River dataset

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th>Vacancy Rate</th>
<th>Residential Growth Scale Factor</th>
<th>Nonresidential Growth Scale Factor</th>
<th>Residential Growth Budget</th>
<th>Nonresidential Growth Budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maplewood</td>
<td>7.94%</td>
<td>1.5</td>
<td>0.5</td>
<td>$1,475,117</td>
<td>$83,037</td>
</tr>
<tr>
<td>Father Kelly</td>
<td>11.84%</td>
<td>0.5</td>
<td>1.5</td>
<td>$550,538</td>
<td>$506,256</td>
</tr>
<tr>
<td>Merchants</td>
<td>12.05%</td>
<td>0.5</td>
<td>1.5</td>
<td>$570,880</td>
<td>$289,445</td>
</tr>
<tr>
<td>Corky Row</td>
<td>12.65%</td>
<td>0.5</td>
<td>1.5</td>
<td>$883</td>
<td>$265,421</td>
</tr>
<tr>
<td>Flint</td>
<td>11.05%</td>
<td>0.5</td>
<td>1.5</td>
<td>$423,835</td>
<td>$378,268</td>
</tr>
<tr>
<td>Highlands</td>
<td>6.51%</td>
<td>0.5</td>
<td>1.5</td>
<td>$347,764</td>
<td>$263,504</td>
</tr>
<tr>
<td>North End</td>
<td>9.01%</td>
<td>0.5</td>
<td>1.5</td>
<td>$626,885</td>
<td>$274,136</td>
</tr>
<tr>
<td>Copicutt</td>
<td>4.80%</td>
<td>1.5</td>
<td>0.5</td>
<td>$707,773</td>
<td>$30,011</td>
</tr>
<tr>
<td>St Anne's</td>
<td>11.58%</td>
<td>1</td>
<td>1</td>
<td>$586,251</td>
<td>$268,226</td>
</tr>
<tr>
<td>Sandy</td>
<td>9.30%</td>
<td>1</td>
<td>1</td>
<td>$393,518</td>
<td>$278,216</td>
</tr>
<tr>
<td>Niagra</td>
<td>12.39%</td>
<td>1.5</td>
<td>0.5</td>
<td>$710,111</td>
<td>$43,595</td>
</tr>
<tr>
<td>Lower Highlands</td>
<td>12.54%</td>
<td>0.5</td>
<td>1.5</td>
<td>$654,239</td>
<td>$286,757</td>
</tr>
<tr>
<td>Steep Brook</td>
<td>8.26%</td>
<td>0.5</td>
<td>1.5</td>
<td>$204,029</td>
<td>$369,148</td>
</tr>
<tr>
<td>Bank Street</td>
<td>9.48%</td>
<td>0.5</td>
<td>1.5</td>
<td>$445,975</td>
<td>$228,771</td>
</tr>
<tr>
<td>Below the Hill</td>
<td>12.24%</td>
<td>0.5</td>
<td>1.5</td>
<td>$112,537</td>
<td>$372,555</td>
</tr>
<tr>
<td>Total Budgeted</td>
<td></td>
<td></td>
<td></td>
<td>$7,799,955.00</td>
<td>$3,876,413.00</td>
</tr>
<tr>
<td>Total Available</td>
<td></td>
<td></td>
<td></td>
<td>$5,436,129.60</td>
<td>$1,359,032.40</td>
</tr>
</tbody>
</table>
Model solution

- Premium Solver Platform using Standard LSGRG Nonlinear Engine
- 242 variables and 275 constraints
- Solution times ranged from 8.10 seconds to 32.43 seconds
Value path

- Four of the five non-dominated solutions result in maximum allowable investments across the two investment types.
- Maximizing clustering of investments results in four neighborhoods receiving no investments, and six other neighborhoods receiving no non-residential investments.
Two non-dominated solutions – decision space
Residential investments are concentrated outside of the region containing the CBD

Non-residential investments generally concentrated closer to CBD

Policy recommendation: avoid expensive programs to encourage relocation to the city center via initiatives such as loft redevelopments
Analysis of solutions

- **Tradeoff analysis**

<table>
<thead>
<tr>
<th>Metric: Change in neighborhood satisfaction objective associated with one-unit gain in clustering objective</th>
<th>Non-dominated solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>83,007,583</td>
<td>Optimize neighborhood satisfaction vs. optimize non-residential equity</td>
</tr>
<tr>
<td>817,800</td>
<td>Optimize clustering vs. compromise solution</td>
</tr>
</tbody>
</table>

 How does sensitivity to changes in neighborhood satisfaction affect willingness to choose between non-dominated solutions?

- **Greedy heuristic**

 - Sort neighborhoods in decreasing order of attractiveness \((1/V_i)\) and decreasing order of residential scale factor \((x)\)
 - Sort neighborhoods in increasing order of attractiveness \((V_i)\) and decreasing order of non-residential scale factor \((y)\)
 - Assign residential (non-residential) investments by ‘bang-for-buck’

 Does ease of generating solution (similar to one that optimizes residential satisfaction) offset resulting inequality?
Conclusions

- Initial effort to provide tangible and substantive guidance to planners and policy-makers
- Solutions balance neighborhood satisfaction, economic efficiency and social equity while accommodating practical limitations on neighborhood-level resource availability
- Neighborhood satisfaction model incorporates notions of scale economies of neighborhood investments while distinguishing between traditional and non-traditional uses
- Non-dominated solutions can serve as a basis for community discussions but not intended to generate specific planning prescriptions
Next steps

- **Current model**
 - Empirically model and validate neighborhood satisfaction functions
 - Investigate alternative forms for equity function
 - Convert decision model to MOLP
 - Engage actual client and allow for different modeling and solution approaches

- **Alternative decision problems**
 - Target individual residential parcels for continued occupancy or allow to become vacant
 - Select vacant parcels for investment for alternative uses
Questions?