Skip to main content
Article
Modeling Studies of Gravity Wave Dynamics in Highly Structured Environments: Reflection, Trapping, Instability, Momentum Transport, Secondary Gravity Waves, and Induced Flow Responses
Journal of Geophysical Research: Atmospheres
  • Wenjun Dong, Embry-Riddle Aeronautical University
  • David C. Fritts, Embry-Riddle Aeronautical University
  • Michael P. Hickey, Embry-Riddle Aeronautical University
  • Alan Z. Liu, Embry-Riddle Aeronautical University
  • Thomas S. Lund, University of Colorado, Boulder
  • Shaodong Zhang, Wuhan University
  • Yanying Yan, Taiyuan University of Technology
  • Fan Yang, Embry-Riddle Aeronautical University
Submitting Campus
Daytona Beach
Department
Physical Sciences
Document Type
Article
Publication/Presentation Date
6-25-2022
Disciplines
Abstract/Description

A compressible numerical model is applied for three-dimensional (3-D) gravity wave (GW) packets undergoing momentum deposition, self-acceleration (SA), breaking, and secondary GW (SGW) generation in the presence of highly-structured environments enabling thermal and/or Doppler ducts, such as a mesospheric inversion layer (MIL), tidal wind (TW), or combination of MIL and TW. Simulations reveal that ducts can strongly modulate GW dynamics. Responses modeled here include reflection, trapping, suppressed transmission, strong local instabilities, reduced SGW generations, higher altitude SGW responses, and induced large-scale flows. Instabilities that arise in ducts experience strong dissipation after they emerge, while trapped smaller-amplitude and smaller-scale GWs can survive in ducts to much later times. Additionally, GW breaking and its associated dynamics enhance the local wind along the GW propagation direction in the ducts, and yield layering in the wind field. However, these dynamics do not yield significant heat transport in the ducts. The failure of GW breaking to induce stratified layers in the temperature field suggests that such heat transport might not be as strong as previously assumed or inferred from observations and theoretical assessments. The present numerical simulations confirm previous finding that MIL generation may not be caused by the breaking of a transient high-frequency GW packet alone.

DOI
https://doi.org/10.1029/2021JD035894
Publisher
John Wiley & Sons, Ltd
Citation Information
Dong, W., Fritts, D. C., Hickey, M. P., Liu, A. Z., Lund, T. S., Zhang, S., et al. (2022). Modeling studies of gravity wave dynamics in highly structured environments: Reflection, trapping, instability, momentum transport, secondary gravity waves, and induced flow responses. Journal of Geophysical Research: Atmospheres, 127, e2021JD035894. https://doi. org/10.1029/2021JD035894