Scaling Recommender Systems Research

Michael Ekstrand, Texas State University
@mdekstrand
http://md.ekstrandom.net

RecSys ’15 Workshop on Large-Scale Recommender Systems
Who am I?

• Ph.D 2014 from Minnesota (GroupLens)
• Now teaching and researching at Texas State
• Lead developer of LensKit toolkit
• Research focus: human-algorithm interaction
 • Implication: what I care about is how the algorithm can improve its users’ lives.
Scale?

- **MovieLens:**
 - 200K users
 - 22M ratings

- **LensKit:**
 - Single (sometimes large!) machine

Large scale?
Large Scale

I want to talk about *large-scale evaluation* of recommender systems.

• Many questions
• Many conditions
• Underlying data may be small
Goals of Today

- What are the dimensions of scaling research?
- What are some challenges?
- What are some (partial) solutions?
- What can be done to help?
Research Methods (Context)

- Offline evaluation and measurement
 - Accuracy metrics
 - Traditional non-accuracy metrics
 - Bespoke measurements
- Online user logging
- User studies and surveys
- Usually interested in user satisfaction, meeting user needs
Scaling Research

How do we scale up our research capacity?

How do we do this in academic settings?
Many Algorithms

• Easy to have hundreds, thousands of algorithms
 • Especially when tuning
• How to efficiently test?
 • Cannot throw at users!
 • Expensive to test even offline
• How to efficiently tune?
 • Many combinations
 • Many metrics
3 approaches

Goal: reduce cost of testing

• Reduce # of things to test
• Reduce cost of running a test
• Parallelize testing (reduces time cost, but not CPU hours/power)
Tuning: reducing # of offline tests

Grid search… is super-expensive.

Burke’s talk Thursday: need tuning strategies! We have been working on this.

Random search works remarkably well [Bergstra & Bengio, JMLR 13(Feb) 2012]
Random search

• If 5% of response surface is ‘good enough’…
• …then random search of 60 points will hit with 95% success…
• …and is trivially parallelizable
Reducing cost of offline tests

LensKit improves throughput by reusing components across algorithms.

- E.g. similarity matrix unchanged by prediction aggregation strategy
- Identify identical components, build them once
- Enabled by dependency-injected architecture
Opportunity for cost reduction

Open question: can we tune/test on subsets?

What results from subsets translate to full data set?
Reducing user testing cost

Basic pruning strategy – may be familiar.
1. Generate ideas
2. Test many ideas offline
3. Pick best (and most different) for user testing
Problem: measurement

• What can we measure?
• Common refrain: offline metrics weakly correlate with online metrics
• Consistent with my results [RecSys 2014]
 • Accuracy weakly correlates with satisfaction
 • ILS weakly correlates with perceived diversity
• EPFL paper on Friday was very promising
• Weak is better than nothing, but we need better metrics
Aside: research success/process

Repeated question/topic: industry, give us tasks!

I don’t quite agree. But would like
• Reviewers, stop emphasizing sketchy metrics.
• Industry, provide data/access/collaboration?

Model: Plista challenges, NewsREEL data.
Complication: human subjects ethics standards
Ethics

Want a huge challenge?

Scale informed consent.
User-Centric Evaluations

- User Studies
- A/B Trials
- Bandit Methods
- Offline Tests*

Higher Throughput / Lower Cost

Higher Fidelity
On Bandits

• A/B tests based on time-tested, familiar scientific experimental methods
• Still very difficult to do well
• Bandits: often the scientific robustness seen as being in the way

• Result:
 • Very good for efficiently finding the best
 • Much harder to understand why it’s the best
Why not?

- Easy to optimize key metric
- Hard to compare diagnostic and supplementary metrics in a scientifically valid fashion
- Producing generalizable knowledge is hard
- However: bandits are seeing use in clinical trials
 - So ‘not yet bandits’, not ‘not bandits’
What challenges?

• Increasing throughput of user studies
 • Maintain statistical validity
• Increasing fidelity of A/B tests and bandits
 • Instrumentation
 • Statistical robustness
 • What does a bandit outcome tell us?
What Do Users Want?

Or, moving past behaviorism.

Observing what users do is easy!

Understanding what they want is hard. Really want is harder yet.

Question: are users satisfied with their actions?
Opportunities

• The *intention-behavior gap*
• Can recommenders help bridge this gap?
• At scale?

Don’t recommend booze to an alcoholic?
What are failures?

• Who is lost/hurt/offended?
 • Small incidents
 • Possibly unique
 • Have disproportionate impact (ragequitting with angry tweets, #UnitedBreaksGuitars)
 • Business rules can help (don’t recommend tweeting health products)
 • Empathic design by diverse team is important

• How can we scale ‘do no harm’?
To sum up

• Understanding what our systems are doing is hard
• Understanding deep behavior impact is very hard
• Testing many things is hard but doable
• Need ongoing industry-academic conversation
 • This conference does that – love it