Skip to main content
Article
Assessing the impact of representational and contextual problem features on student use of right-hand rules
Physical Review Physics Education Research (2016)
  • Mary Bridget Kustusch
Abstract
Students in introductory physics struggle with vector algebra and these challenges are often associated
with contextual and representational features of the problems. Performance on problems about cross product
direction is particularly poor and some research suggests that this may be primarily due to misapplied right-
hand rules. However, few studies have had the resolution to explore student use of right-hand rules in detail.
This study reviews literature in several disciplines, including spatial cognition, to identify ten contextual and
representational problem features that are most likely to influence performance on problems requiring a
right-hand rule. Two quantitative measures of performance (correctness and response time) and two
qualitative measures (methods used and type of errors made) were used to explore the impact of these
problem features on student performance. Quantitative results are consistent with expectations from the
literature, but reveal that some features (such as the type of reasoning required and the physical awkwardness
of using a right-hand rule) have a greater impact than others (such as whether the vectors are placed together
or separate). Additional insight is gained by the qualitative analysis, including identifying sources of
difficulty not previously discussed in the literature and revealing that the use of supplemental methods, such
as physically rotating the paper, can mitigate errors associated with certain features.
Disciplines
Publication Date
2016
DOI
10.1103/PhysRevPhysEducRes.12.010102
Citation Information
Mary Bridget Kustusch. "Assessing the impact of representational and contextual problem features on student use of right-hand rules" Physical Review Physics Education Research Vol. 12 (2016)
Available at: http://works.bepress.com/mbkustusch/3/