Skip to main content
Effect of high arterial carbon dioxide tension on efficiency of immunoglobulin G absorption in calves
American Journal of Veterinary Research (1999)
  • J J Drewry
  • J D Quigley
  • Dennis R Geiser, University of Tennessee, Knoxville
  • Matt Welborn, University of Tennessee, Knoxville
OBJECTIVES: To determine whether high PaCO2 reduced apparent efficiency of IgG absorption (AEA) in calves and whether assisted ventilation of calves with high PaCO2 increased AEA. ANIMALS: 48 Holstein calves. PROCEDURES: Arterial and venous blood samples were collected 1, 13, and 25 hours after birth; an additional venous sample was collected at 37 hours after birth. Arterial samples were analyzed for PaCO2, PaO2, pH, and bicarbonate and base excess concentrations; venous samples were analyzed for plasma IgG concentrations. On the basis of 1-hour PaCO2, calves were assigned to nonrespiratory acidosis (PaCO2 < 50 mm Hg; n = 19) or respiratory acidosis (PaCO2 > or = 50 mm Hg; 29) groups. Calves in the respiratory acidosis group were assigned randomly to receive no further treatment (n = 17) or to be given 5 minutes of assisted ventilation (12). All calves received between 1.8 and 2 L of colostrum 2, 14, 26, and 38 hours after birth. Plasma volume and AEA were determined 25 hours after birth. RESULTS: 1-hour PaCO2 had no effect on AEA or on plasma IgG concentrations determined 13, 25, or 37 hours after birth. Artificial ventilation had no effect on plasma IgG concentration or AEA. CONCLUSIONS AND CLINICAL RELEVANCE: Lack of effect of 1-hour PaCO2 on AEA and IgG concentration indicated that calves compensated for moderate acid-base imbalances associated with birth. Calves born with high PaCO2 achieved adequate plasma IgG concentrations if fed an adequate amount of high-quality colostrum early in life. The effect of artificial ventilation on PaCO2 was temporary and did not increase AEA.
Publication Date
May, 1999
Citation Information
J J Drewry, J D Quigley, Dennis R Geiser and Matt Welborn. "Effect of high arterial carbon dioxide tension on efficiency of immunoglobulin G absorption in calves" American Journal of Veterinary Research Vol. 60 Iss. 5 (1999)
Available at: