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Abstract.   Monitoring studies often use marked animals to estimate population abundance at small spatial 
scales. However, at smaller scales, occupancy sampling, which uses detection/nondetection data, may be 
useful where sites are approximately territories, and occupancy dynamics should be strongly correlated 
with population dynamics. Occupancy monitoring has advantages in that it is less expensive and invasive, 
and marked animals are not needed. Here, we used empirical data to determine whether and when change 
in occupancy is a good proxy for population change for a territorial species. As part of this overall goal, 
we also compared maximum-likelihood estimates using a model-averaging approach with a Bayesian 
MCMC approach. We used field data collected from 1993 to 2013 on three study areas for California 
spotted owls (Strix occidentalis occidentalis), a territorial species. Although correlations for trajectories of 
realized population change (Δt) between territory occupancy and Pradel models were moderate to high for 
Bayesian MCMC-based estimates and high for model-averaged estimates, magnitudes of the trajectories 
were different with the Pradel model reporting greater magnitudes of change. For the two areas showing a 
decline, Δt for the Pradel model was approximately 20–30% lower than for the occupancy model, and 25% 
higher in the area showing an increase. These differences can arise because the occupancy model is less 
sensitive, in that if two owls share a territory, the loss of one may be reflected in survival and, consequently 
in Δt by the Pradel model, but because the territory remains occupied it is not reflected by the occupancy 
model. Bayesian MCMC-based and model-averaged estimates of Δt were in close agreement in pattern 
(correlation ≥0.74) and magnitude (relative differences of last Δt were ≤5%) for both occupancy and mark–
resight models. Results from the Pradel model may lead to conservation actions necessary to avoid high 
extinction or extirpation risk for small populations, while results from the territory occupancy model may 
result in status quo management. We found both Bayesian MCMC-based and model-averaged estimates 
of Δt robust approaches to evaluate population trends. However, we recommend the Bayesian MCMC 
approach for estimating risk (e.g., probability of declines) for retrospective analyses.
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Introduction

Ecological and conservation monitoring meth-
ods tend to diverge depending on spatial scale. 
Vital rate and abundance monitoring are often 
reserved for populations or smaller areas because 
it is logistically difficult and prohibitively expen-
sive to estimate changes in these parameters 
across large areas over time. When monitoring 
programs are large scale, such as at bioregional 
scales, detailed demographic information at a 
few locations may be exchanged for less detailed 
information about a larger area. At broad spatial 
scales, species distributions and their dynamics 
are often the metrics of interest, and these met-
rics can be described by the proportion of sites 
occupied (ψ) over time. Occupancy monitoring, 
which uses detection/nondetection data, can 
facilitate time-sensitive assessment of population 
status across large landscapes (Zuckerberg et al. 
2009, Roney et al. 2015). In a monitoring context, 
occupancy can be used as a surrogate for pop-
ulation abundance or mark–resight estimates of 
rate of population change (λ), both of which are 
more expensive and require more effort to reflect 
the state of a population (MacKenzie et al. 2006).

Population performance can be robustly 
depicted by realized population change (Δt), 
which is an encompassing metric of population 
trend over a period of time (Franklin et al. 2004, 
Conner et al. 2013). In essence, it is the ratio of 
population size at a subsequent time period (t) 
relative to the initial population size. For long-
term monitoring data, Δt is an insightful metric 
for portraying the cumulative dynamics of a pop-
ulation across medium and long timescales, such 
as 5–20  yr (Gerrodette and Rojas-Bracho 2011). 
For example, if Δt  =  0.78 for an 18-yr period, 
then the population declined by 22% over that 
period. This metric can be estimated from popu-
lation abundance estimates (N) as N̂t∕N̂1, or from 
occupancy estimates as ψ̂t∕ψ̂1, or from the prod-
uct of λ̂t based on vital rates of marked animals 
(Nichols and Hines 2002).

While marked animals are needed to esti-
mate population Δt based on abundance or λt 
from vital rates, they are not required to esti-
mate Δt for the occupancy model because sites 
are the sampling units. For territorial species, a 
territory may represent a single animal, a pair, 
or a group (e.g., pack) of animals. If occupancy 

sampling is used with territories equaling sin-
gle sites in an occupancy model, then occupancy 
changes should be strongly correlated with pop-
ulation changes, such that territory occupancy Δt 
should be strongly correlated with population 
Δt (Tempel and Gutiérrez 2013). Many wildlife 
and conservation agencies are faced with present 
budget reductions as well as likely future reduc-
tions, which may result in decreased monitoring. 
Occupancy monitoring offers the potential of 
providing information about population dynam-
ics at reduced cost compared to more intensive 
mark–recapture approaches (MacKenzie et  al. 
2006, 2010, 2011).

When estimating Δt, Bayesian methods offer 
an advantage in that the posterior distribution 
of Δt provides a robust method for detecting and 
describing declines (Wade 2000). Indeed, prob-
abilities of declines can be addressed directly, 
providing information beyond the acceptance 
or rejection of a null hypothesis (Eguchi and 
Gerrodette 2009, Gerrodette 2011). For example, 
for a population of California spotted owls (CSO; 
Strix occidentalis occidentalis), monitored from 
1990 to 2011, Δt = 0.78 with a CI of 0.54–1.08 and 
the statistical null hypothesis of no decline was 
not rejected (Conner et al. 2013). However, based 
on the posterior distribution of Δt, the probabil-
ity that the population declined was high (0.94) 
and the probability that the population declined 
≥10% was substantial (0.80). The problem of hav-
ing a large probability of decline, even when 
the null hypothesis of no decline is not rejected, 
is especially important for small populations. 
Smaller populations can drop, undetected by a 
null hypothesis approach, to low levels where 
the probability of extinction increases to unac-
ceptably high levels due to demographic vari-
ability and stochastic environmental events 
(White 2000b, Lande 2001, Morris and Doak 
2002). Thus, a Bayesian approach, if it performs 
well, is desirable for estimating probabilities of 
declines at specific levels of concern (e.g., ≥10%, 
≥30%, and ≥50%).

Although correlations between occupancy 
and relative abundance have been found (e.g., 
Estrada and Arroyo 2012, Oliver et  al. 2012, 
Roney et  al. 2015), we are only aware of one 
comparison between trends in annual occu-
pancy and population trends for the same study 
population (Tempel and Gutiérrez 2013). This 
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comparison was specific; it examined the relation-
ship between model-averaged values of Δt from 
occupancy and the Pradel model for a declining 
population, where trajectories of occupancy Δt 
and population Δt were found to closely match 
(Tempel and Gutiérrez 2013). Here, we extend 
this work to three populations with three differ-
ent trajectories: declining, relatively stationary, 
and increasing (Conner et al. 2013). In addition, 
because of the advantage of a Bayesian MCMC 
approach for Δt, we wished to compare it to the 
model-averaging approach taken by Tempel and 
Gutiérrez (2013).

Our overarching goal was to more fully exam-
ine whether and when occupancy works as a 
surrogate for mark–resight population monitor-
ing for territorial species using Δt. Our second 
goal was to evaluate different methods for esti-
mating Δt for the occupancy and Pradel models. 
Specifically, we wished to compare the value of 
estimates based on Bayesian MCMC and model-
averaging approaches for evaluating population 
trajectories of species with long-term monitoring 
data. Here, we evaluate the relationship between 
the occupancy and mark–resight estimates using 
field data collected from 1993 to 2013 on three 
study areas for CSO, a territorial species with 
high site fidelity (Blakesley et al. 2006, Seamans 
and Gutiérrez 2006, Seamans and Gutierrez 
2007) as a case study. The CSO remains a focal 
species of conservation concern, and knowledge 
of population trends is an important component 
of assessing status and informing forest manage-
ment planning efforts.

Methods

Study area
We used data for spotted owls on three study 

areas in the southern Cascade and Sierra 
Nevada Mountains, California (Fig.  1), col-
lected from 1993 to 2013. Although the study 
areas were not randomly selected, they spanned 
the length of the contiguous CSO range in the 
Sierra Nevada and encompassed all habitat 
types known to be used by spotted owls in the 
Sierra Nevada. The Lassen (LAS) study area 
was in the southern Cascades, but it was 
included in the Sierra Nevada province by the 
U.S. Forest Service for management purposes 
(USDA Forest Service 2004). Most of the LAS 

and Sierra (SIE) study areas were located on 
public land managed by the U.S. Forest Service, 
whereas the Sequoia and Kings Canyon (SKC) 
study area was in two national parks. Franklin 
et al. (2004) and Blakesley et al. (2010) described 
in detail the LAS, SIE, and SKC study areas; 
however, SKC has changed from Blakesley 
et al. (2010). In 2006, the study area for SKC was 
reduced; all analyses and estimates were based 
on data from this reduced study area. Long-
term mark–resight data were available for each 
study population. The number of marked birds 
varied each year, but generally ranged between 
40 and 90, with 2–17 new birds marked each 
year.

LAS, SIE, and SKC had territorial survey 
areas, where survey effort varied among years, 
and a subset core study area, which was sur-
veyed consistently for estimation of λt based on 
mark–resight data. In these core areas, survey 
coverage was complete, including areas between 
known territories. For all empirical comparisons, 

Fig. 1. Outline of southern Cascade Mountains and 
Sierra Nevada, California, showing location of three 
study areas for California spotted owls, 1993–2013.
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we used data only from the core areas to meet 
the assumptions of the Pradel and occupancy 
models.

Field data collection
Although mark–resight data were collected 

prior to 1993, survey coverage of SKC was not 
adequate to meet the Pradel model assumption 
of constant study area size prior to 1991. 
Following Franklin et al. (2004), Blakesley et al. 
(2010), and Conner et al. (2013), λt for the first two 
annual intervals were discarded in part to avoid 
potential bias; thus, the initial year for the Pradel 
Δt estimate for SKC was 1993. We used the same 
initial year for all study areas and the same time 
periods for occupancy and Pradel analyses, 
which were 1993–2013 for LAS and SIE and 
1993–2012 for SKC (the SKC study ended in 
2012).

Field methods for spotted owl population 
dynamics studies have been well described 
(Forsman 1983, Franklin et al. 1996, 2004, Pradel 
1996, Anthony et al. 2006). In particular, Franklin 
et  al. (2004) detailed the field methods and 
protocols used to collect the data in our study. 
Although the studies were designed to collect 
data to estimate survival and reproduction of 
individuals and pairs, the structure of the sur-
veys made it possible to create data sets that were 
appropriate for modeling site occupancy as well. 
Because field methods have been well described, 
we present only a brief summary of survey meth-
ods that are relevant to the repeated site visits for 
generating encounter histories for the occupancy 
model, as well as for generating encounter histo-
ries used in the Pradel model.

Surveys to find and locate CSOs were con-
ducted each year from 1 April to 31 August on 
LAS and from 1 March to 30 September on SIE and 
SKC. Surveys were conducted by vocally imitat-
ing spotted owl vocalizations. Most surveys were 
conducted at night, while some surveys were 
conducted during daylight hours to find roosts 
or nests, search for mates and fledglings, identify 
banded owls, and capture unmarked owls. For 
Pradel model λt to represent changes in the num-
ber of owls in a population of interest, the study 
area size and boundary must remain unchanged 
through time (Hines and Nichols 2002, Franklin 
et  al. 2004) unless the model is structured cor-
rectly to accommodate a study area expansion, as 

in Blakesley et al. (2010). Consequently, we used 
data only from the core areas to interpret λt as the 
annual rate of population change.

Following Tempel and Gutiérrez (2013), occu-
pancy territories were defined as areas where we 
recorded diurnal (starting at civil twilight in the 
morning and ending at civil twilight in the eve-
ning) observations of owls in at least 3 yr from 
1993 to 2012. We used only diurnal observations 
because CSOs are central-place foragers (Orians 
and Pearson 1979), so that the roost/nest area 
may be considered as a rough approximation 
to the territory center. Also, nocturnal observa-
tions may have been owls from neighboring ter-
ritories or nonresident owls traveling through 
an area. We used the 3-yr requirement to define 
occupancy territories in order to screen out 
areas where nonterritorial owls may have been 
observed. This was particularly important for SIE 
and SKC data where March and September diur-
nal observations may have had a greater prob-
ability of being nonresident owls than the April 
through August observations. We averaged the 
diurnal locations (from 1993 to 2012) of each ter-
ritory to define occupancy territory centers. We 
used half the mean nearest neighbor distance 
among occupancy territory centers for the radius 
of a circle around each center to define the occu-
pancy territory.

Data from the field surveys were summarized 
differently for occupancy and Pradel models.

For the Pradel models, we used data from all 
known resident banded owls within the core 
areas to create encounter histories. An owl was 
considered resident on a territory in a given year 
if it was a member of a pair, twice in a season 
with observations at least 7 d apart, or if it was 
identified by color bands as the previous year’s 
resident, due to high site fidelity in spotted owls 
(Blakesley et  al. 2006, Seamans and Gutiérrez 
2006, Seamans and Gutierrez 2007). If a resident 
marked owl was captured or resighted during 
any of the surveys in a year (i.e., it was identified 
as alive and on the study area), a 1 was entered 
into the encounter history; otherwise, a 0 was 
entered. For the occupancy model, we constructed 
an encounter history for each territory. Following 
Tempel and Gutiérrez (2013), we divided each 
sampling season (i.e., primary sampling period), 
which was approximately the breeding season, 
into 10 (LAS) or 14 (SIE and SKC) semimonthly 
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periods (i.e., secondary sampling periods). For 
each semimonthly period, we assigned a 0 if no 
owls were detected and a 1 if at least one owl was 
detected during any survey. However, a 2 was 
assigned if fledglings were detected so that we 
could examine how reproductive success may 
have influenced detectability. We included only 
surveys that contributed to ≥30  min of survey 
effort within the occupancy territory without the 
detection of an owl, or surveys in which an owl 
was detected within the occupancy territory. If 
an occupancy territory was not surveyed during 
a semimonthly period or received <30  min of 
survey effort without detection of an owl, we 
assigned a missing value. One study area, SKC, 
had a year of missed data collection (2005), which 
resulted in fewer estimates of λt and Δt for both 
the Pradel and occupancy models, as described 
below.

Occupancy modeling
We used robust-design occupancy models to 

estimate annual territory occupancy dynamics 
(MacKenzie et al. 2003, 2006). We used ψ1 γ ε p 
structure of the robust occupancy model, where 
ψ1 = proportion of sites occupied during the first 
time period, γ = probability a site unoccupied in 
year t is occupied in the next year (t + 1; local col-
onization probability), ε = probability a site occu-
pied in year t is unoccupied the next year (t + 1; 
local extinction probability), p  =  probability of 
detection at an occupied site, with year  =  pri-
mary sampling occasion (i.e., year), and 
visit  =  secondary sampling occasion. Estimated 
annual proportion of sites occupied (ψt), which 
we refer to as occupancy, is estimated from 
annual estimates of ε and γ (MacKenzie et  al. 
2006). We used Program MARK (White and 
Burnham 1999) for all analyses. Because data 
were not collected on SKC in 2005, ψt could not 
be estimated for 2005. Consequently, Δt  =  2005  = 
ψ2005/ψ1993 also could not be estimated.

Our model development procedure was a 
sequential process. We followed a common pro-
cess of first modeling p while leaving the struc-
ture of other model parameters general (i.e., 
ψ1 εt γt, where t  =  year modeled as different in 
each year; Nichols et  al. 1997). We modeled p 
first with a general model that allowed p to vary 
categorically among all year by visit (j) combi-
nations (pt ×  j). We then constrained within-year 

variation following the strategy of Tempel and 
Gutiérrez (2013); that is, we used month as a cat-
egorical covariate to represent different states 
of the owl’s breeding cycle, and fledging season 
(0 = prefledging, 1 March–31 May; 1 = postfledg-
ing, 1 June–31 September) to represent behaviors 
that may influence detection probability that are 
associated with the reproductive cycle. We also 
replaced visit with time trends (linear [T], log-
linear [lnT], quadratic [TT], constant [.]) based 
on previous findings for detection probability 
(Seamans and Gutierrez 2007). Essentially, recap-
ture models with T, lnT, and TT represent our 
hypothesis that observer proficiency increased 
as the studies progressed due to experience find-
ing owls (T structure), but may level as there is a 
upper limit to detection (lnT and TT structures). 
Finally, we used reproductive status (0 = nonre-
productive, 1 = reproductive) and initial detection 
(0 = before and up to first detection, 1 = after first 
detection) for each site (like individual covari-
ates) as categorical variables to replace visit; see 
Tempel and Gutiérrez (2013) for details.

Using the top model for within-year p, we then 
constructed less parameterized models for ε, 
γ, and p in which year was modeled with time 
trends (linear [T], log-linear [lnT], quadratic [TT], 
constant [.]). We considered all possible combi-
nations of temporal trends for ε, γ, and p. We did 
not use additional covariates (e.g., habitat vari-
ables within a territory) because our goal was 
to compare annual population dynamics using 
occupancy and mark–resight (Pradel’s temporal 
symmetry) models.

We used ψt to calculate occupancy Δt as: 

Thus, overall change, which is estimated on the 
last year (k) of the study period, was estimated 
as: Δk=ψk∕ψ1.

For the maximum-likelihood estimates from 
the model-averaging approach, we estimated 
the variance of Δk using the delta method (Seber 
1982). For the Bayesian MCMC approach, esti-
mates and their distributions were from occu-
pancy model εt γt p(best structure). We used 
MCMC sampling implemented in Program 

Δt=
ψt+1

ψt
×
ψt+2

ψt+1
×
ψt+3

ψt+2
×…×

ψt

ψt−1
,

which reduces to:Δt=
ψt

ψ1
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MARK to estimate posterior distributions of ψ1, 
εt, and γt, from which we calculated the poste-
rior distribution of ψt MCMC. The posterior dis-
tributions of ψt MCMC were used to estimate the 
posterior distribution of Δk (Δk MCMC) as well as 
median Δk and the 2.5th and 97.5th percentiles.

For all MCMC simulations, we used 4000 tun-
ing samples, 1000 burn-in samples, and 20,000 
realizations after thinning. We used vague priors 
for all parameters included in the model. Because 
all model estimates were logit-transformed 
parameters, we used a normal prior distribution 
with mean of 0 and a standard deviation of 1.75, 
which is a vague prior when back transformed 
to the real scale (2.5th and 97.5th percentiles of 
approximately 0.02 and 0.98, with a uniform dis-
tribution between those percentiles). We deter-
mined whether the Markov chains converged 
using the Gelman–Rubin statistic, R-hat (Gelman 
et  al. 2004). For each parameter, we used 10 
chains of 1000 each and used a threshold of R-
hat  <  1.1 to indicate adequate sampling of the 
posterior distribution of ψ1, εt, and γt. Before 
beginning the MCMC simulations, we used a 
routine in Program MARK’s MCMC sampler to 
determine the number to thin by averaging the 
maximum number to thin for each parameter in 
order to achieve first-order Markovian indepen-
dence. We estimated the median and 2.5th and 
97.5th percentiles for the distribution of Δk MCMC 
for each study area.

Mark–resight modeling
We used each owl’s mark–resight encounter his-

tory to estimate the annual rate of population 
change in territorial owls (λt) using Pradel’s tem-
poral symmetry model (Pradel 1996, Nichols and 
Hines 2002, Franklin et al. 2004) in Program MARK 
(White and Burnham 1999). We used the (ϕ f p) 
structure of the Pradel model, where ϕ is apparent 
survival (probability that an owl alive in year t sur-
vived to the next year [t + 1] and remained on the 
study area [i.e., available for recapture/resight]), f 
is recruitment (number of territorial owls at t + 1 
divided by number of territorial owls at t) and p is 
the recapture (by capture or resight) probability. 
For this form, λ is a derived estimate, calculated as 
λ  = ϕ  +  f. For each study area, we estimated the 
overdispersion parameter (ĉ) using the median ĉ 
procedure in Program MARK under the Cormack-
Jolly-Seber (CJS) global model ϕ(s  ×  t) p(s  ×  t), 

where s is an owl’s sex. When ĉ was >1, we used 
ĉ  to inflate variances of parameter estimates 
(Burnham and Anderson 2002).

Both LAS and SIE had expansion areas, areas 
in which surveying began several years after the 
start of the study. If these were not accounted 
for, new owls found in these areas would enter 
the Pradel model as new recruits, and result in 
a positive bias in estimates of λt. Therefore, we 
accounted for these areas by grouping them 
separately and excluding estimates of λt from 
the year of and year following the expansion, 
and estimates of p for the year of expansion (see 
Appendix G: Blakesley et al. 2010 for a detailed 
explanation of the procedure). In addition, as 
mentioned above, SKC had a year of missed data 
collection (2005). We used an unequal time inter-
val to account for this in Program MARK, which 
resulted in average survival and recruitment 
over the 2-yr interval.

Similar to the occupancy modeling, we used a 
sequential approach for model development. We 
left the structure of ϕ and f general (i.e., ϕt ft) and 
first modeled p. Note that for the Pradel model, p 
is the probability of capturing an unmarked indi-
vidual or of resighting or recapturing a marked 
individual that was still alive during a given year, 
where p in the occupancy modeling is the probabil-
ity of detecting an owl(s) at an occupied territory 
during a survey. We did not include sex in models 
of ϕ and f to parallel the occupancy modeling, in 
which we did not consider the sex of a territory 
holder. In addition, previous analyses for CSO on 
the three study areas did not find sex effects on ϕ 
and f (Appendix H: Blakesley et al. 2010). We ran 
a series of models hypothesized to affect p. For p, 
we included sex (Blakesley et al. 2010), and mod-
eled year with time trends (linear [s + T], log-linear 
[s + lnT], quadratic [s + TT], and constant [s]). The 
time trends represent our hypothesis that observer 
proficiency increased as the studies progressed 
due to experience finding owls (T structure), 
but may level as there is a upper limit to detec-
tion (lnT and TT structures). We also ran the time 
trend models without sex. For the next phase, we 
used the best structure on p and constructed mod-
els in which ϕt and ft were reduced. Similar to the 
occupancy modeling, we also modeled year with 
time trends (linear [T)], log-linear [lnT], quadratic 
[TT], and constant [.]), using all possible combi-
nations of temporal trends in ϕt and ft. We used 
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the derived parameter option in Program MARK 
to generate annual model-averaged estimates and 
variances of λt (i.e., ϕt + ft).

We used estimates of λt (λ̂t) to estimate Δ̂t on 
each study area, which for the Pradel model 
is the proportional change in estimated pop-
ulation size, relative to the initial population 
size (Franklin et  al. 2004). We calculated Δ̂t as 
�Δt=

∏t−1
i=1 λ̂t. To get the overall change through 

the last interval (k) for the study period, we cal-
culated �Δk=λ̂1993×λ̂1994×…×λ̂2012 for LAS and 
SIE, and through λ̂2011 for SKC. For the model-
averaging approach, we estimated the variance 
of Δk using the delta method (Seber 1982) and the 
variance–covariance of the model-averaged esti-
mates. For the Bayesian MCMC approach, esti-
mates and their distributions were from Pradel 
model ϕt ft p(best structure). We used MCMC 
sampling implemented in Program MARK to 
estimate posterior distributions of ϕt, and ft, from 
which we calculated the posterior distribution of 
λt MCMC. The posterior distributions of λt MCMC 
were used to estimate the posterior distribution 
of Δk (Δk MCMC) as well as median Δk and the 2.5 
and 97.5 percentiles. We did not use the average 
estimate from the 2 yr (2004–2005 and 2005–2006) 
that arose from the year of missing data collec-
tion on SKC to avoid biasing the variance for esti-
mates of Δt and ultimately Δk.

For all MCMC simulations, we used 4000 tun-
ing samples, 1000 burn-in samples, and 20,000 
realizations after thinning. We used vague pri-
ors for all parameters included in the model. For 
estimates of ϕ, which were logit-transformed 
parameters, we used a normal prior distribution 
with mean of 0 and a standard deviation of 1.75, 
as described for occupancy parameters above. 
For estimates of f, which were log-transformed 

parameters, we used a normal prior distribution 
with mean of 0 and a standard deviation of 1.75, 
which is a vague prior when back transformed 
to the real scale (2.5th and 97.5th percentiles of 
approximately 0.04 and 30.44). We determined 
whether the Markov chains converged using 
the Gelman–Rubin statistic, R-hat (Gelman et al. 
2004). For each parameter ϕt, and ft, we used 10 
chains of 1000 each and used a threshold of R-hat 
<  1.1 to indicate adequate sampling of the pos-
terior distribution. Before beginning the MCMC 
simulations, we used a routine in Program 
MARK’s MCMC sampler to determine the num-
ber to thin by averaging the maximum number to 
thin for each parameter in order to achieve first-
order Markovian independence. We estimated 
the median and 2.5th and 97.5th percentiles for 
the distribution of Δk MCMC for each study area.

Results

Occupancy
We located between 37 and 74 owl territories in 

the three study areas during 1993–2013 (Table 1). 
Of these, reproduction occurred on 84–93% at 
least once during the study, which indicates that 
we had identified biologically relevant territories. 
The top structure on p for all three study areas 
had month or visit as an additive effect with 
reproduction or initial detection effects (Table 2). 
Whether an owl was reproductive had a strong 
positive effect on detection probability for LAS 
and SKC, while whether an owl was initially 
detected had a strong positive effect on subse-
quent detection probability for SIE (Table 2).

There were different patterns in ε and γ among 
the study areas. LAS had an increasing ε and a 
relatively stationary γ, while SIE and SKC had 

Table 1. Descriptions of the three study areas in the southern Cascades and Sierra Nevada, California, and 
sample sizes of California spotted owls.

Study area Study period Area (km2)
No. territories 

monitored† No. repro.‡
Avg. total no. 
marked/yr§

Avg. new 
marked/yr¶

LAS 1993–2013 1254 74 69 66 14
SIE 1993–2013 562 62 55 73 12
SKC 1993–2012 182 37 31 49 6

Note: LAS, Lassen; SIE, Sierra; SKC, Sequoia-Kings Canyon.
† Number of occupancy territories.
‡ Reproduction observed at least once during the study period.
§ Average number of marked owls on study area per year: includes territorial adult and subadult owls.
¶ Average number of newly marked owls on study area: includes territorial adult and subadult owls.
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increasing γ and a relatively stationary ε (SIE) 
or slightly declining ε (SKC). The differences in 
patterns of ε and γ were reflected in occupancy 
patterns; based on model-averaged values, LAS 
had a decline (~25%), SIE had a mild decline 
(~11%), and SKC was relatively stationary (~3% 
increase; Fig. 2).

Mark–resight
To model rate of population change, we 

used  encounter histories for 331, 334, and 171 

individual owls, for LAS, SIE, and SKC, respec-
tively, with an average of 49–73 marked owls/
year located on the study areas (Table 1). Median 
ĉ ranged from 1.00 to 1.16, suggesting some 
overdispersion but no serious lack of fit (Table 3). 
We adjusted all variance estimates by site-specific 
estimates of c.

There were similar patterns in ϕ for all study 
areas; that is, ϕ was slightly increasing (Fig.  3). 
Patterns in f were different, with f slightly dec
reasing on LAS, remaining stable on SIE, and 

Table 2. Top-ranked models for multiseason territorial occupancy analysis of three populations of California 
spotted owls in the southern Cascades and Sierra Nevada, California, 1993–2013.

Model† K QAICc ΔQAICc wi Deviance

Lassen study area (1993–2013; n = 74)
ε(TT) γ(.) p(month + repro) 11 8356.377 0.000 0.412 8334.214
ε(lnT) γ(.) p(month + repro) 10 8356.985 0.607 0.304 8336.849
ε(lnT) γ(lnT) p(month + repro) 11 8358.760 2.383 0.125 8336.597
ε(TT) γ(TT) p(month + repro) 13 8358.945 2.568 0.114 8332.720
ε(T) γ(.) p(month + repro) 10 8361.738 5.361 0.028 8341.602
ε(T) γ(T) p(month + repro) 11 8363.619 7.242 0.011 8341.456
ε(.) γ(.) p(month + repro) 9 8366.344 9.967 0.003 8348.233
ε(.) γ(lnT) p(month + repro) 10 8368.214 11.837 0.001 8348.078
ε(.) γ(T) p(month + repro) 10 8368.344 11.967 0.001 8348.208

Sierra study area (1993–2013; n = 62)
ε(.) γ(lnT) p(visit + initial) 39 3845.290 0.000 0.200 3277.104
ε(.) γ(T) p(visit + initial) 39 3845.699 0.409 0.163 3764.445
ε(T) γ(T) p(visit + initial) 40 3845.726 0.437 0.161 3762.303
ε(T) γ(.) p(visit + initial) 39 3845.890 0.600 0.148 3764.637
ε(lnT) γ(lnT) p(visit + initial) 40 3846.530 1.240 0.107 3763.106
ε(.) γ(TT) p(visit + initial) 40 3847.080 1.790 0.082 3763.656
ε(lnT) γ(.) p(visit + initial) 39 3847.319 2.029 0.072 3766.065
ε(.) γ(.) p(visit + initial) 38 3847.448 2.158 0.068 3768.360

Sequoia-Kings Canyon Study Area (1993–2012; n = 37)
ε(T) γ(.) p(yr + month + repro) 32 3678.927 0.000 0.286 3611.727
ε(T) γ(T) p(yr + month + repro) 33 3679.771 0.843 0.188 3610.365
ε(TT) γ(.) p(yr + month + repro) 33 3680.114 1.186 0.158 3610.708
ε(.) γ(T) p(yr + month + repro) 32 3681.647 2.720 0.074 3614.447
ε(lnT) γ(.) p(yr + month + repro) 32 3681.802 2.875 0.068 3614.602
ε(.) γ(.) p(yr + month + repro) 31 3682.072 3.145 0.059 3617.071
ε(.) γ(lnT) p(yr + month + repro) 32 3682.664 3.737 0.044 3615.464
ε(lnT) γ(lnT) p(yr + month + repro) 33 3682.984 4.056 0.038 3613.578
ε(TT) γ(TT) p(yr + month + repro) 35 3683.234 4.307 0.033 3609.399
ε(.) γ(TT) p(yr + month + repro) 33 3683.780 4.853 0.025 3614.375
ε(TT) γ(.) p(month + repro) 14 3684.142 5.215 0.021 3655.523
ε(T) γ(.) p(month + repro) 13 3688.155 9.228 0.003 3661.619
ε(T) γ(T) p(month + repro) 14 3689.059 10.132 0.002 3660.440

Note: Only models with mass (wi) > 0.001 are shown.
† Key to model notation: K = no. of parameters; QAICc = quasi Akaike’s information criteria corrected for small sample size 

and lack of model fit; ΔQAICc = difference between the model listed and the QAICc of the best model; wi = model mass based 
on model QAICc compared to all other model QAICc values; T = linear time trend; lnT = logarithmic time trend; TT = quad-
ratic time trend; . = constant time; yr = year; visit = semimonthly period during reproductive period, modeled as a categorical 
variable; month = month during reproductive period, modeled as a categorical variable; repro = categorical site covariate 
indicating whether a juvenile(s) were detected at the nest; initial = site covariate that separated recapture probability from ini-
tial capture probability; ε = local extinction probability; γ = local colonization probability; p = probability of detection.
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Fig. 2. Model-averaged annual estimates (95% CI) of territory extinction, colonization, and occupancy from 
the occupancy model for three California spotted owl (Strix occidentalis occidentalis) populations in the southern 
Cascades and Sierra Nevada Mountains, California, 1993–2013.
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Table 3. Model-selection results from Pradel model analyses of population change (λ) using the apparent sur-
vival (ϕ) and recruitment ( f ) formulation for California spotted owls on three study areas in the southern 
Cascades and Sierra Nevada, California, 1992–2013.

Model† K‡ QAICc DQAICc wi Deviance

Lassen study area (1990–2013; n = 331, ĉ = 1.089)
ϕ(lnT) p(s + TT) f(.) 10 3053.610 0.000 0.166 916.079
ϕ(lnT) p(s + TT) f(T) 11 3054.417 0.807 0.111 914.853
ϕ(T) p(s + TT) f(.) 10 3054.509 0.899 0.106 916.978
ϕ(lnT) p(s + TT) f(lnT) 11 3054.791 1.181 0.092 915.227
ϕ(TT) p(s + TT) f(T) 12 3054.812 1.202 0.091 913.213
ϕ(TT) p(s + TT) f(.) 11 3055.027 1.417 0.082 915.464
ϕ(TT) p(s + TT) f(lnT) 12 3055.272 1.662 0.072 913.673
ϕ(lnT) p(s + TT) f(.) 11 3055.642 2.032 0.060 916.079
ϕ(T) p(s + TT) f(T) 11 3055.725 2.115 0.058 916.161
ϕ(T) p(s + TT) f(lnT) 11 3056.046 2.436 0.049 916.482
ϕ(lnT) p(s + TT) f(TT) 12 3056.109 2.499 0.048 914.510
ϕ(TT) p(s + TT) f(TT) 13 3056.621 3.011 0.037 912.984
ϕ(T) p(s + TT) f(TT) 12 3057.182 3.571 0.028 915.582

Sierra study area (1990–2013; n = 334, ĉ = 1.156)
ϕ(T) p(s + TT) f(.) 10 3421.170 0.000 0.187 1128.266
ϕ(lnT) p(s + TT) f(T) 11 3421.887 0.717 0.130 1126.953
ϕ(lnT) p(s + TT) f(lnT) 11 3421.993 0.823 0.124 1127.059
ϕ(TT) p(s + TT) f(.) 11 3422.031 0.861 0.121 1127.097
ϕ(lnT) p(s + TT) f(.) 10 3422.054 0.884 0.120 1129.149
ϕ(T) p(s + TT) f(T) 11 3423.173 2.003 0.069 1128.239
ϕ(T) p(s + TT) f(lnT) 11 3423.199 2.028 0.068 1128.265
ϕ(lnT) p(s + TT) f(TT) 12 3423.438 2.268 0.060 1126.473
ϕ(TT) p(s + TT) f(lnT) 12 3423.990 2.819 0.046 1127.024
ϕ(T) p(s + TT) f(TT) 12 3424.549 3.379 0.034 1127.584
ϕ(TT) p(s + TT) f(TT) 13 3425.483 4.313 0.022 1126.483
ϕ(TT) p(s + TT) f(T) 12 3425.584 4.414 0.021 1128.618

Sequoia-Kings Canyon study area (1991–2012; n = 171, ĉ = 1.000)
ϕ(lnT) p(.) f(.) 7 1678.969 0.000 0.221 455.112
ϕ(T) p(.) f(.) 7 1679.736 0.767 0.151 455.879
ϕ(lnT) p(.) f(lnT) 8 1680.334 1.365 0.112 454.442
ϕ(lnT) p(.) f(T) 8 1680.958 1.989 0.082 455.066
ϕ(TT) p(.) f(.) 8 1681.026 2.057 0.079 455.134
ϕ(T) p(.) f(lnT) 8 1681.280 2.311 0.070 455.388
ϕ(T) p(.) f(T) 8 1681.766 2.797 0.055 455.874
ϕ(TT) p(.) f(lnT) 9 1682.280 3.311 0.042 454.349
ϕ(lnT) p(.) f(t) 24 1682.450 3.481 0.039 423.400
ϕ(T) p(.) f(t) 24 1682.738 3.769 0.034 423.688
ϕ(lnT) p(.) f(TT) 9 1682.932 3.963 0.031 455.001
ϕ(TT) p(.) f(T) 9 1682.998 4.029 0.030 455.067
ϕ(T) p(.) f(TT) 9 1683.749 4.780 0.020 455.818
ϕ(TT) p(.) f(t) 25 1684.786 5.817 0.012 423.625
ϕ(TT) p(.) f(TT) 10 1685.011 6.042 0.011 455.037
ϕ(t) p(.) f(.) 23 1686.326 7.357 0.006 429.382
ϕ(s + TT) p(.) f(t) 26 1686.768 7.799 0.004 423.491
ϕ(t) p(.) f(T) 24 1688.419 9.450 0.002 429.369

Note: Models shown are those with wi > 0.001.
† Key to model notation: K = no. of parameters; QAICc = quasi Akaike’s information criteria corrected for small sample size 

and lack of model fit; ΔQAICc = difference between the model listed and the QAICc of the best model; wi = model mass based 
on model QAICc compared to all other model QAICc values; s = sex; t = year effect as a categorical variable; T = linear time 
trend; lnT = logarithmic time trend; TT = quadratic time trend; . = constant time; ϕ = apparent survival; f = recruitment of territo-
rial owls; p = probability of detection.

‡ The number of parameters was adjusted for study area expansion, which added three parameters.
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Fig. 3. Model-averaged annual estimates (95% CI) of apparent survival, recruitment, and rate of population 
change from the Pradel model for three California spotted owl (Strix occidentalis occidentalis) populations in the 
southern Cascades and Sierra Nevada Mountains, California, 1993–2013.
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showing some annual variability on SKC (Fig. 3). 
Top models for all three study areas had tempo-
ral trends for ϕ (Table 3). Top models for f were 
mixed; that is, there were either temporal trends 
or f was constant. Patterns in λ followed from ϕ 
and f; for LAS and SIE, λ slightly increased during 
the study period, while for SKC λ varied from 
year to year (Fig. 3).

Occupancy vs. mark–resight
For LAS and SIE, the trajectories for occupancy 

and Pradel Δt showed declines, while for SKC the 
Pradel model showed an increase while occu-
pancy showed relatively little change (Fig. 4). By 
the end of the study period, MCMC-based and 
model-averaged estimates of Δt were similar (all 
≤5% different, Fig. 5); for simplicity, we compare 
occupancy and Pradel MCMC-based estimates. 
The Pradel model showed more dramatic patterns 
of overall change than the occupancy model. The 
Δk for the Pradel model at the end of the study 
period was 29% lower for LAS, 21% lower for SIE, 
and 26% higher for SKC relative to the occupancy 
model (Fig. 4 and Table 4). The variance for the 
Pradel estimates of Δt was greater than for the 
occupancy estimates; the 95% CI lengths of overall 
Δt were 1.6–3.4× longer for the Pradel estimates.

Posterior distributions of Δk were used to esti-
mate probabilities of declines and increases in 
territory occupancy and population (Table  5). 
Different risks were revealed by the two models. 
For LAS and SIE, the biggest differences were 
for the ≥30% decline; while territory occupancy 
models showed low probabilities (0.08 and 0.01) 
for this larger decline, the Pradel model showed 
substantial-to-moderate probabilities (0.89 and 
0.53; Table  5) for population change. However, 
the probability of any decline (≥0%) was similar 
between the models for LAS and SIE. In contrast 
to LAS and SIE, for SKC the probability of any 
decline of territory occupancy was much higher 
(0.56) compared to the Pradel model (0.13; 
Table  5). Note that for SKC, this comparison is 
not biologically meaningful because ψ1 was 
approximately 1 (0.99); thus, the only real way its 
occupancy could move was down.

Bayesian MCMC-based vs. model-averaged 
estimates

The MCMC chains for all occupancy model 
parameters and areas converged (R-hat  <  1.1). 

Model-averaged and Bayesian MCMC estimates 
had similar trajectories; correlations between Δt 
ranged from 0.77 to 0.89 (Fig.  5). However, 
because of the model used for the Bayesian 
MCMC approach [e.g., ε(t) γ(t) p(best struc-
ture)], the estimates showed much greater 
annual variation than model-averaged esti-
mates (Fig. 5). Estimates from the MCMC poste-
rior distribution closely reflected raw occupancy 
patterns (not shown), except that MCMC-based 
estimates were higher due to the incorporation 
of detection probability. The model-averaged 
estimates sometimes diverged from their 
MCMC counterparts, but the magnitude of the 
divergence varied from area to area (Fig.  5). 
However, by the end of the study period MCMC 
and model-averaged estimates of Δk were all 
≤5% of each other. Variances of the MCMC Δt 
estimates were greater than for their model-
averaged counterparts. For the Pradel model, 
the 95% CI lengths were 21–24% longer for 
MCMC-based estimates relative to model-
averaged estimates, while for the occupancy 
model they were 28–96% longer.

Discussion

Although correlations for trajectories of Δ̂t 
between territory occupancy and Pradel models 
were moderate for MCMC-based estimates and 
high for model-averaged estimates, the magni-
tude of the trajectories was different with the 
Pradel model reporting greater magnitude of 
changes in the population; that is, Δ̂k from the 
Pradel model was approximately 20–30% lower 
than for the territory occupancy model for LAS 
and SIE and 25% higher for SKC. In terms of 
declines, territory occupancy declined by 13–21%, 
while the Pradel model indicated the population 
declined by 31–44%. Although both methods 
report declines, estimates for the Pradel model 
were of greater magnitude which could lead to 
different management responses. For example, 
the International Union for Conservation of 
Nature and Natural Resources (IUCN) guidelines 
use a decline of >30% over a 10-yr time period as 
one of its criteria for categorizing threatened pop-
ulations (IUCN 2001). Thus, results from the 
Pradel model may lead to conservation actions, 
while results from the territory occupancy model 
may result in status quo management.
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The difference in the magnitude of estimated 
declines can arise simply because of the different 
resolution between the approaches. In general, 
there can be decreases or increases in population 
numbers that will not be captured by the territory 

occupancy model. For example, if two owls share 
a territory, the loss of one may be reflected in 
survival and, consequently in λt and Δt, by the 
Pradel model, but because the territory remains 
occupied it is not reflected by the occupancy 

Fig. 4. Estimates (95% CI) of realized population change based on occupancy and Pradel models based on 
Bayesian MCMC estimates and model-averaged estimates. Data are for three California spotted owl (Strix 
occidentalis occidentalis) populations in the southern Cascades and Sierra Nevada Mountains, California, 1993–2013.
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model. Tempel et al. (2014) noted a similar dis-
crepancy between an integrated population 
model (IPM) and occupancy model, which they 
attributed to an increasing number of territories 
occupied by single owls during the study period. 
A similar mechanism can result in the differences 

in estimated increases between Pradel and occu-
pancy methods. To wit, a second owl could move 
into a territory occupied by a single owl; this 
change can be captured by the Pradel model via 
recruitment, but not by the occupancy model. 
However, a multistate occupancy model that 

Fig. 5. Estimates (95% CI) of realized population change based on Bayesian MCMC and model-averaging 
approaches for Pradel and Occupancy models. Data are for three California spotted owl (Strix occidentalis 
occidentalis) populations in the southern Cascades and Sierra Nevada Mountains, California, 1993–2013. MCMC 
estimates were from the top model for p with categorical time structure for ε(t) γ(t) (occupancy model) and ϕ(t) 
f(t) (Pradel model).
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includes the transition probability of a site mov-
ing between two occupancy states of pair vs. sin-
gle bird may be an appropriate way to address 
this issue. And from a management perspective, 
a multistate occupancy model might be much 
more informative, because trends in the occu-
pancy of breeding pairs might be more mean-
ingful to population dynamics than trends in the 

number of territories with ≥1 owl. Future simula-
tion efforts are needed to evaluate whether this 
approach would yield trajectories that are more 
similar in magnitude to the Pradel model.

However, there is another mechanism that 
could give rise to differences between the occu-
pancy and Pradel model for an increasing pop-
ulation; that is, the territory occupancy model 
inherently has a density-dependent structure, in 
that no additional territories can be colonized if: 
(1) the study area is at carrying capacity; or (2) the 
number of sample territories is fixed at the start 
of the study and all are occupied with no chance 
for detecting additional newly colonized sites 
in the study area. The SKC study area showed 
increases, with the probability of a ≥10% increase 
estimated as 0.07 for the occupancy model and 
0.74 for the Pradel model (Table  5). Because of 
the retrospective nature of our study where we 
assigned occupancy sampling sites after the end 
of the sampling period, and because we sur-
veyed areas between territories, if the population 
increase in SKC Pradel estimates led to addi-
tional territories, those territories would have 
been incorporated in our sample. Our occupancy 
estimate of 0.99 suggests that the number of owl 
territories on our study area may have reached 
carrying capacity, while the higher estimate for 
the Pradel model may indicate an increase in the 
number of pairs of owls at occupied sites over 
time.

The choice of territory size (and concomitantly 
number of occupancy sites for a study area) 

Table 4. Median overall realized population change 
(Δt), which is based on a posterior distribution of the 
product of the annual rate of population change (λt) 
for the Pradel model and ψfinal year/ψfirst year for the 
occupancy model.

Study 
area Model Δt† 95% CI

Rel. diff, 
%‡

LAS Pradel 0.56 0.39 0.79 −29
Occupancy 0.79 0.66 0.91

SIE Pradel 0.69 0.50 0.96 −21
Occupancy 0.87 0.74 1.00

SKC§ Pradel 1.25 0.85 1.85 26
Occupancy 0.99 0.85 1.15

Notes: LAS, Lassen; SIE, Sierra; SKC, Sequoia-Kings 
Canyon.

Estimates are from occupancy model ε(t) γ(t) p(best struc-
ture) and Pradel model ϕ(t) f(t) p(best structure). Data are for 
California spotted owls on three study areas in the southern 
Cascades and Sierra Nevada, California, 1993–2013. Overall 
realized population change is the proportion of the initial 
population size or number of territories remaining at the end 
of the time period

† Estimates are the median and 2.5th and 97.5th percentiles 
from the posterior distribution.

‡ Relative diff is the difference of Pradel Δt relative to 
occupancy Δt; Rel. diff = (ΔtPradel − Δtocc)/Δtocc.

§ Data for SKC were 1993–2012.

Table 5. Estimates of the probability of population territory occupancy or territorial population declining or 
increasing a given percentage or greater for a 19-yr (SKC) or 20-yr (LAS and SIE) monitoring period.

Effect and 
study area

Territory occupancy Population
≥30% ≥10% ≥0% ≥30% ≥10% ≥0%

Decrease
LAS 0.08 0.97 1.00 0.89 1.00 1.00
SIE 0.01 0.65 0.97 0.53 0.94 0.99
SKC 0.00 0.09 0.56 0.00 0.05 0.13

Increase
LAS 0.00 0.00 0.00 0.00 0.00 0.00
SIE 0.00 0.00 0.03 0.00 0.00 0.01
SKC 0.00 0.07 0.44 0.42 0.74 0.87

Notes: LAS, Lassen; SIE, Sierra; SKC, Sequoia and Kings Canyon.
Estimates are from occupancy model ε(t) γ(t) p(best structure) and Pradel model ϕ(t) f(t) p(best structure). Data are for 

California spotted owls on three study areas in the southern Cascades and Sierra Nevada, California, 1993–2013. Probabilities 
are based on a posterior distribution of overall realized population change (Δt), which is the proportion of the initial occupied 
territories remaining occupied at the end of the monitoring time period.
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could also lead to differences between territory 
occupancy and Pradel estimates of population 
change. If occupancy sample sites were smaller 
than territories, there would be a negative bias 
in ψ̂ in a declining population because the net 
loss of one territory holder can result in the loss 
of two occupied sites. Conversely, if sites were 
large, such that one site covered >1 territory, 
then losing one territory holder would not result 
in an unoccupied site and declines that exist 
may be missed. This problem has been noted 
for occupancy studies in continuous habitat by 
Efford and Dawson (2012), who conclude that 
occupancy is an inadequate metric for popu-
lation monitoring when it is confounded with 
home-range (akin to territory in this context) 
size. For best results, in terms of tracking pop-
ulation changes through time, the choice of site 
size should match the territory size.

In addition to differences in magnitudes of the 
trajectories of Δt, variance also differed between 
the methods with smaller variances for terri-
tory occupancy estimates compared to Pradel 
estimates. This may often be the case because 
detection probabilities are typically greater 
than capture or resighting probabilities because 
only a single individual has to be observed and 
confirmed to species for a detection to occur. In 
contrast, for a capture or recapture/resighting 
to occur, an individual has to be physically cap-
tured or observed well enough that its identity 
can be ascertained. This is a much higher bar 
for most species, and lower capture or detection 
probabilities almost always result in decreased 
precision in the parameters of interest. While 
the larger variance for the Pradel model may be 
because individual capture and resight prob-
abilities are often lower than detection prob-
abilities, this was not the case here as resight 
rates were high (90% were ≥0.85). Tempel and 
Gutiérrez (2013) found a similar result, which 
they speculated may be because occupancy 
models have larger effective sample sizes due to 
multiple surveys at a territory each year, while 
the Pradel model uses a single point. There is 
debate over what should be the effective sam-
ple size for robust-design closed capture–recap-
ture models (Kendall and Bjorkland 2001), the 
category of models to which occupancy is most 
closely related (Barbraud et al. 2003). However, 
when we changed the effective sample size to 

reflect the most conservative approach for esti-
mating effective sample size, in this case the 
number of sites sampled, there was very little 
change in the variance (and no change in the 
order of top models). It may also be that this 
difference is partly a theoretical variance cal-
culation issue. The delta method variance esti-
mate for the Pradel model, in which Δt is the 
product of all annual λt, involves summing log-
transformed values of all variances and covari-
ance of each multiplied estimate. Meanwhile, 
Δt for occupancy is simply a division for each 
year that does not include a cumulative effect 
of added variances. Further investigations com-
paring occupancy model and Pradel model 
results should include studies using simulated 
data to help more fully understand why the 
occupancy model yields more precise estimates 
than the Pradel model.

For both occupancy and Pradel models, cor-
relations were high for trajectories of Δ̂t between 
Bayesian MCMC-based and model-averaged 
estimates, and the magnitude of the trajectories 
was similar. However, there was a difference 
in the temporal pattern of Δ̂t between the two 
approaches. There was more annual variation in 
the MCMC-based estimates; thus, estimates of 
Δ̂t for individual years could differ from model-
averaged estimates (see LAS, Fig. 5). This is not 
due to an inherent difference between maximum 
likelihood and Bayesian inference, rather it is 
because top models for all study areas, and for 
both occupancy and Pradel models, were less 
parameterized time trend models. We note that 
this may not be the case for other studies; model-
averaged values could show high variation if 
the top models were time varying. Because we 
were comparing approaches, we were not con-
cerned with comparing specific models for the 
model-averaging approach. Rather, we used 
model averaging as the practitioner uses it (e.g., 
Anthony et al. 2006, Doherty et al. 2010, Tempel 
and Gutiérrez 2013). However, for the Bayesian 
MCMC approach, we used a model in which 
annual parameters were unconstrained: ε(t) γ(t) 
p(best structure) and ϕ(t) f(t) p(best structure). 
We chose this highly parameterized model to 
avoid any bias in annual estimates of ψ or λ, and 
expected the variance to be reasonable given that 
we modeled the parameters as random effects 
(i.e., shrinkage estimates or empirical Bayes 
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estimates), which removes sampling variation. 
Not surprisingly, estimates from the MCMC-
based approach show annual variation better, 
but their variances were greater than for their 
model-averaged counterparts. Perhaps a future 
comparison should be made between likelihood-
based and Bayesian model-averaged estimates.

Although the higher variances associated 
with Bayesian MCMC-based estimates may be 
disadvantageous, they have a major advantage 
over model-averaged estimates; namely, that the 
probability of decline can be estimated for a retro-
spective analysis using the posterior distribution 
of Δt. In general, evaluating whether a popula-
tion declined typically relies on hypothesis tests 
with a null hypothesis of no decline. However, 
this approach does not answer the real question 
of interest; “What is the probability the popula-
tion declined at or more than a specific amount?” 
(Reckhow 1990, Crome et  al. 1996, Wade 2000, 
King et al. 2010). Using Bayesian MCMC meth-
ods to generate a posterior distribution of Δt is 
a valuable tool for robustly estimating risk, or 
probability of declines, for retrospective analysis 
of monitored populations.

Spatial relationships between occupancy and 
abundance have been an active topic in ecology, 
particularly at the landscape scale (e.g., Gaston 
et al. 2000, Webb et al. 2012, Roney et al. 2015), 
but also at smaller scales (Estrada and Arroyo 
2012, Guarino et al. 2012). The governing theory 
is that there will be a positive inter- and intra-
specific relationship between regional occu-
pancy and local abundance (Zuckerberg et  al. 
2009). In addition, other methods use occupancy 
data to estimate abundance directly, by either 
using additional information (e.g., counts; Royle 
2004, Royle et al. 2005) or by exploiting density-
driven heterogeneity in detection probability 
(Royle and Nichols 2003, Stanley and Royle 
2005). Rather than simply using occupancy 
models, these methods may be intermediate 
approaches, in terms of cost and effort, for the 
detection of trends in populations. However, 
none of these studies provide insight as to how 
temporal trends in occupancy relate to trends in 
population abundance. Tempel and Gutiérrez 
(2013) conducted the only study we are aware 
of in which population dynamics based on occu-
pancy and abundance were directly compared 
for the same population.

Based on model-averaged estimates, Tempel 
and Gutiérrez (2013) found estimates of Δt from 
occupancy and abundance closely matched in 
pattern and magnitude. While LAS and SIE show 
similar patterns and magnitude of decline to the 
Tempel and Gutiérrez (2013) CSO study site, also 
in the Sierra Nevada, our results differ strikingly 
in the magnitude of Δt between the occupancy 
and Pradel models. If we compare our declining 
populations, LAS and SIE, to theirs, we found 
the overall Δt was ~20–30% lower for the Pradel 
model compared to the occupancy model, while 
their estimates were almost identical (3% higher 
for the Pradel model). However, more recently, 
Tempel et al. (2014) found a large divergence in 
the magnitude of Δt from an IPM compared to 
the occupancy model. Here, the discrepancy was 
similar to what we found between the occupancy 
and Pradel model, with the IPM estimate approx-
imately 30% lower than the occupancy estimate. 
They attribute part of the difference to the inclu-
sion of earlier years (which had high recruitment 
but could not be included in occupancy because 
it did not meet study design assumptions) and/or 
an increase in the number of territories occupied 
by single owls over the study period (Tempel 
et  al. 2014). However, because of the inclusion 
of the additional years, there is no way to diag-
nose why their results varied so dramatically 
from ours. Further field evaluation is necessary 
to understand why, when, and where Δt will be 
aligned between territory occupancy and Pradel 
estimates.

Conclusions

Occupancy monitoring has seen increased use 
over the past decade, to some extent as shrinking 
budgets have motivated the use of less expensive 
approaches to monitoring. Occupancy models 
have successfully been used to rapidly and inex-
pensively assess population status over large 
landscapes (Finley et  al. 2005, Hristienko and 
McDonald 2007, Budy et  al. 2015). Further, for 
territorial species, occupancy data have extended 
beyond describing distributional dynamics and 
relative abundance to estimating reproduction 
(Nichols et al. 2007, MacKenzie et al. 2010) and 
survival (Roth and Amrhein 2010). In addition to 
meeting budget constraints, developing methods 
that allow for the use of occupancy data can 
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make large amounts of data available for research 
into changes in population distributions, as well 
as for monitoring. Many agencies and institu-
tions have storehouses of historical presence–
absence data that could provide a boon for 
researchers with the appropriate analytical meth-
ods (e.g., Hagler et al. 2011). Although some data 
may not be applicable because of failure to meet 
requirements for occupancy modeling (Boshoff 
and Kerley 2010), it is likely there is a great deal 
of data that can provide a valuable retrospective 
evaluation of large-scale and long-term popula-
tion changes.

While territory occupancy has been success-
fully used to estimate other vital rates, results 
from our study suggest it may provide a less sen-
sitive metric for estimating a population’s trajec-
tory. From our study, it appears the Pradel model 
is more sensitive to detecting population changes. 
However, a multistate occupancy model might 
match more closely and provide greater insight to 
population dynamics than trends in the number 
of territories with ≥1 owl. But, until the relation-
ship between multistate occupancy and popula-
tion dynamics is evaluated, careful consideration 
of the trade-offs between cost, the spatial scale 
of inferential interest, and risk tolerance should 
be exercised in the development of a monitoring 
program. If one is mainly concerned with detect-
ing declines in a population, and the population 
is not at great risk, the financial savings of less 
expensive occupancy monitoring may be worth 
the loss of more sensitive population informa-
tion. On the other hand, if monitoring species of 
concern, which often are characterized by life his-
tory strategies where longevity has been selected 
at the expense of reproduction (Cardillo et  al. 
2008), then declines may be missed or underes-
timated by occupancy monitoring. Smaller pop-
ulations may decline, undetected by occupancy 
monitoring, to low levels where the probability 
of extinction increases to unacceptably high lev-
els due to demographic variability and stochastic 
environmental events (White 2000a, Lande 2001, 
Morris and Doak 2002). Although both methods 
reported declines, the Pradel model estimated 
greater magnitudes of decline that could lead to 
different management responses. Namely, results 
from the Pradel model may lead to conserva-
tion actions necessary to avoid high extinction 
or extirpation risk for small populations, while 

results from the territory occupancy model may 
result in status quo management. In addition, we 
found both Bayesian MCMC-based and model-
averaged estimates of Δt a robust way to evalu-
ate population trends. However, we recommend 
Bayesian MCMC-based estimates of occupancy 
for estimating risk, or probability of declines, for 
retrospective analyses of monitored populations.
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