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Introduction

This presentation provides an overview of the integration of
structures considered in Reconstructability Analysis (RA) and those
considered in Bayesian Networks (BN) into a joint lattice of
probabilistic graphical models.

The work builds on the RA work of Klir (1985), Krippendorff (1986),
and Zwick (2001), and the BN work of Pearl (1985, 1987, 1988,
2000), Verma (1990), Heckerman (1994), Chickering (1995),
Andersson (1997), and others.

The joint RA-BN lattice of general graphs expands the set of general
graphs with unigue independence structures beyond what was
previously available by either RA alone or BN alone, thus allowing
for representations of complex systems which are:

l. more accurate relative to data and/or

II.  simpler and thus more comprehensible and more generalizable
than would be possible by modeling only with RA or only with BN.



Reconstructability Analysis

Reconstructability Analysis (RA) is a data modeling approach developed in
the systems community (Ashby, 1964; Klir, 1976, 1985, 1986; Conant,
1981, 1988; Krippendorff, 1981, 1986; Broekstra, 1979; Cavallo, 1979;
Zwick, 2001, 2004; and others) that combines graph theory and
information theory.

RA graphs are undirected and can be cyclic or acyclic.

RA is designed especially for nominal variables, but continuous variables
can be accommodated if their values are discretized.

Graph theory specifies the structure of the model (the set of relations
between the variables); information theory uses the data to characterize
the strength and the precise nature of the relations.

Data applied to a graph structure yields a probabilistic graphical model of
the data.

Applications include time-series analysis, classification, decomposition,
compression, pattern recognition, prediction, control, and decision
analysis (Zwick, 2004).



RA Lattice of General Graphs

Figure 1 shows the lattice of four variable RA
general graphs (adapted from Klir, 1985;
Krippendorff, 1986) representing all four @
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Figure 1 RA Lattice of General Graphs



Bayesian Networks

A Bayesian Network (BN) is another graphical modeling approach for data
modeling that is closely related to RA. Bayesian networks combine graph
theory and probability theory. Where BN and RA overlap, they are
equivalent, but they have features absent in the other methodology.

BNs have origins in the type of path model originally described by Wright
(1921, 1934), but it was not until the 1980s that BNs were more formally
established (Pearl, 1985, 1987, 1988; Neapolitan, 1989).

BNs are represented by a single type of graph structure; a directed acyclic
graph, which is a subset of chain graphs, also known as block recursive
models (Lauritzen, 1996).

A key to BNs is the “V-structure” also known as colliding edges. For
example A -> B <- C where edges from both A and C collide on B. This
structure and resulting probability expression, p(A)p(C)p(B|AC), are not
found in RA.



BN Lattice of General Graphs

Figure 2 shows the four variable lattice of BN
general graphs.

There are 20 BN general graphs in the lattice,
i.e., 20 unique general independence
structures for four variable BNs.

Solid squares represent variables, edges are
represented by directed arrows from one
square to another.

The dashed lines with arrows from one
general graph to another represent the
hierarchy of general graphs, with parent
graphs being above child graphs.

Child graphs result from the deletion of one
edge from the parent graph.

For a three variable BN lattice, there are 5

general graphs and 11 specific graphs; for four

variables there are 20 general graphs and 185
specific graphs (Andersson 1997).
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Figure 2 BN Lattice of General Graphs



Rho Lattice

The four variable Rho (p) lattice of Figure 3 (adapted
from Klir, 1985, p. 237) is a simplification of the RA
lattice of general graphs of Figure 1.

The Rho lattice represents all possible undirected
relations between four variables, and is general
enough to map both RA general graphs and BN
general graphs.

Solid dots represent variables; lines connecting dots
represent relations between variables.

The graph pl represents maximal connectedness, or
interdependence, between variables, and the graph
p11 represents independence among all variables.
Graphs in-between p1 and p11 represent a mix of
dependence and independence among variables.
Each RA or BN graph corresponds to one, and only
one, of the eleven Rho graphs.
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Figure 3 Rho Lattice



Equivalent RA and BN general graphs,
example
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Figure 4 Equivalent RA and BN example

e Figure 4 shows an example of equivalent RA and BN graphs, namely G7 and
BN2*, respectively.

e Labeled variables in G7 results in independencies (A _| _B | C, D) - assigning
labels to BN2* yields the same independencies and thus the same general and
specific graph.



Equivalent RA and BN general graphs

Table 1. Rho, RA and BN equivalent graphs

Specific Graph
RA general BN general P P .
Rho graph raoh raoh Example Independencies

grap grap (RA notation)
pl G1 BN1 ABCD no independencies
p2 G7 BN2* ACD:BCD (A_|_B]|C,D)
03 G10 BN5* BCD:AD (A_|_B,C|D)
p5 G13 BN10 BCD:A (A_|_B,C,D)
p6 G15 BN11* AD:BD:CD (A_|_B,C|D),(B_| C|D)
p7 G16 BN14* AD:BC:BD (A_|_B|D),(C_|_AD]|B)
08 G17 BN16* BD:CD:A (B_|_C|D)(A | B,C,D)
p9 G18 BN18 AD:BC (A,D_|_B,C)
p10 G19 BN19 CD:A:B (B_|_C,D),(A_|_B,C,D)
pll G20 BN20 A:B:C:D (A_|_B,C,D),(B_|_C,D),(C_|_D)

e Table 1 shows the list of all equivalent Rho, RA and BN four variable general
graphs, an example of their specific graph notation, and their independences.

* These specific graph examples align with the BN general graphs of Figure 2
assuming labeling of nodes A, B, C, D in the order of top left, top right, bottom
left, bottom right.



Joint Lattice of RA and
BN General Graphs

There are 10 RA general graphs,
comprising all of the acyclic graphs in the
RA lattice that are equivalent to BN
general graphs and there are 10 general
graphs unique to the RA lattice and 10
general graphs unique to the BN lattice,
thus 30 unique general graphs in the
joint RA-BN lattice.

All 10 non-equivalent RA general graphs
in the four variable lattice are cyclic and
require iteration to generate their
probability distributions - BNs are acyclic
and have analytic solutions, so there are
no BN graphs that are equivalent to
these cyclic RA graphs.

All 10 non-equivalent BN general graphs
have a “V-structure” which creates an
independence structure not found in any
RA general graph.
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Figure 5 Joint Lattice of RA and BN General Graphs
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Summary

The joint lattice of RA and BN general graphs for four variables increases the number of general
graphs with unique independence structures from 20 in the four variable RA lattice and 20 in the
four variable BN lattice to 30 in the joint RA-BN lattice, and when variable labels are added,
increases the number of unique specific graphs from 114 in the RA lattice and 185 in the BN lattice
to 238 in the joint lattice.

The integration of the two lattices offers a richer and more expansive way to model complex
systems leveraging the V-structure unique to BN graphs and the allowability of cycles in RA graphs.

The joint RA-BN lattice of general graphs expands the set of general graphs with unique
independence structures beyond what was previously available by either RA alone or BN alone,
allowing for representations of complex systems which are (i) more accurate relative to data and/or
(ii) simpler and thus more comprehensible and more generalizable than would be possible by
modeling only with RA or only with BN.

This joint lattice how these two related frameworks — RA and BN — both members of the family of
probabilistic graphical modeling methodologies, can be integrated into a unified framework.

Extension of this work will include designing algorithms to search this joint RA-BN lattice, analysis
of RA and BN predictive models in which the IV-DV distinction is made, consideration of “hybrid”
RA-BN models, and other topics.
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