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In this paper we focus on the development of new methods suitable for efficient and reliable coarse-graining of
non-equilibrium molecular systems. In this context, we propose error estimation and controlled-fidelity model
reduction methods based on Path-Space Information Theory, combined with statistical parametric estimation
of rates for non-equilibrium stationary processes. The approach we propose extends the applicability of
existing information-based methods for deriving parametrized coarse-grained models to Non-Equilibrium
systems with Stationary States (NESS). In the context of coarse-graining it allows for constructing optimal
parametrized Markovian coarse-grained dynamics within a parametric family, by minimizing information loss
(due to coarse-graining) on the path space. Furthermore, we propose an asymptotically equivalent method–
related to maximum likelihood estimators for stochastic processes–where the coarse-graining is obtained
by optimizing the information content in path space of the coarse variables, with respect to the projected
computational data from a fine-scale simulation. Finally, the associated path-space Fisher Information Matrix
can provide confidence intervals for the corresponding parameter estimators. We demonstrate the proposed
coarse-graining method in (a) non-equilibrium systems with diffusing interacting particles, driven by out-of-
equilibrium boundary conditions, as well as (b) multi-scale diffusions and their well-studied corresponding
stochastic averaging limits, comparing them to our proposed methodologies.

Keywords: coarse-grained dynamics, non-equlibrium stationary states, driven diffusion, relative entropy rate,
Fisher information matrix, parametrization, kinetic Monte Carlo, Markov processes, driven diffusion of inter-
acting particles, stochastic averaging of two-scale diffusions

I. INTRODUCTION

Non-equilibrium systems at transient or steady state
regimes are typical in applied science and engineer-
ing, and are the result of coupling between different
physicochemical mechanisms, driven by external cou-
plings or boundary conditions. Typical examples in-
clude reaction-diffusion systems in heteroepitaxial cat-
alytic materials, polymeric flows and separation processes
in microporous materials,32,35,36. In this paper we de-
velop reliable model-reduction methods, i.e., having con-
trolled fidelity of approximation, and capable to han-
dle extended, non-equilibrium statistical mechanics mod-
els. These coarse-graining methods allow for construct-
ing optimal parametrized Markovian coarse-grained dy-
namics within a parametric family, by minimizing infor-
mation loss (due to coarse-graining) on the path space.
Model-reduction (or coarse-graining) approaches can be
often described in the context of parameter estimation
in parametrized statistical models. However, atomistic
models of materials lead to high-dimensional probability
distributions and/or stochastic processes to which the
standard methods of statistical inference and model dis-
crimination are not directly applicable. The emphasis

a)Submitted to the Journal of Chemical Physics.
b)Corresponding author:markos@math.umass.edu
c)Electronic mail: plechac@math.udel.edu

on information theory tools is also partly justified since
often we are interested in probability density functions
(PDF), typically non-Gaussian, due to the significance of
tail events in complex systems. A primary focus of this
paper is on systems with Non-Equilibrium Steady States
(NESS), i.e., systems in which a steady state is reached
but the detailed balance condition is violated and explicit
formulas for the stationary distribution, e.g., in the form
of a Gibbs distribution, are not available.
Information-theoretic methods for the analysis of

stochastic models typically employ entropy-based tools
for analyzing and estimating a distance between (prob-
ability) measures. In particular, the relative entropy
(Kullback-Leibler divergence) of two probability mea-
sures µ(dx) = µ(x) dx and ν(dx) = ν(x) dx

R (µ | ν) =
∫

µ(x) log
µ(x)

ν(x)
dx

allows us to define a pseudo-distance between two mea-
sures. A key property of the relative entropy R (P |Q)
is that R (P |Q) ≥ 0 with equality if and only if P = Q,
which allows us to view relative entropy as a “distance”
(more precisely a semi-metric) between two probabil-
ity measures P and Q. Moreover, from an informa-
tion theory perspective8, the relative entropy measures
loss/change of information. Relative entropy for high-
dimensional systems was used as measure of loss of infor-
mation in coarse-graining2,20,24, and sensitivity analysis
for climate modeling problems28.
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Using entropy-based analytical tools has proved essen-
tial for deriving rigorous results for passage from inter-
acting particle models to mean-field descriptions,26. The
application of relative entropy methods to the error anal-
ysis of coarse-graining of stochastic particle systems have
been introduced and studied in20–23,25. Aside of this rig-
orous numerical analysis direction, entropy-based com-
putational techniques were also developed and used for
constructing approximations of coarse-grained (effective)
potentials for models of large biomolecules and polymeric
systems (fluids, melts). Optimal parametrization of effec-
tive potentials based on minimizing the relative entropy
between equilibrium Gibbs states, e.g.,3,6,7, extended pre-
viously developed inverse Monte Carlo methods, primar-
ily based on force matching approaches, used in coarse-
graining of macromolecules (see, e.g.,30,38). In13 an ex-
tension to dynamics is proposed in the context of Fokker-
Planck equations, by considering the corresponding rela-
tive entropy for discrete-time approximations of the tran-
sition probabilities. Furthermore, relative entropy was
used as means to improve model fidelity in a paramet-
ric, multi-model approximation framework of complex
dynamical systems, at least when the model’s steady-
state distributions are explicitly known,29. Overall, such
parametrization techniques are focusing on systems with
a known steady state, such as a Gibbs equilibrium dis-
tribution. More specifically, computational implementa-
tions of optimal parametrization in the inverse Monte
Carlo methods is relatively straightforward for equilib-
rium systems in which the best-fit procedure is applied
to an explicitly known equilibrium distribution and where
relative entropy is explicitly computable.

On the other hand, this is not the case in non-
equilibrium systems, even at a steady state where typ-
ically we do not have a Gibbs structure and the steady-
state distribution is unknown altogether, setting up one
of the primary challenges for this paper. Indeed, here
we show that, in non-equilibrium systems the general in-
formation theory ideas based on Kullback-Leibler diver-
gence are still applicable but they have to be properly
formulated in the context of Non-equilibrium Statistical
Mechanics by focusing on the probability distribution of
the entire time series, i.e., on the path space of the under-
lying stochastic processes. We show that, surprisingly,
such a path-space relative entropy formulation is: (a)
general in the sense that it applies to any Markovian
models (e.g. Langevin dynamics, Kinetic Monte Carlo,
etc), and (b) is easily computable as an ergodic average
in terms of the Relative Entropy Rate (RER), therefore
allowing us to construct optimal parametrized Marko-
vian coarse-grained dynamics for large classes of models.
This procedure involves the minimization of information
loss in path space, where information is inadvertently lost
due to coarse-graining procedure. In fact, the proposed
parametrization scheme in13 is mathematically justified
by reformulating it on the path space using the Relative
Entropy Rate and it is a specific, but reversible (i.e., it
has a Gibbs steady state) example of our methodology.

Furthermore, we propose an asymptotically equivalent
method to RERminimization, which is related to to max-
imum likelihood estimators for stochastic processes, and
where the optimal coarse-graining is obtained by optimiz-
ing the information content in path space of the coarse
variables, with respect to the projected computational
data from a fine-scale simulation. Finally, the path-space
Fisher Information Matrix (FIM) derived from Relative
Entropy Rate (RER) can provide confidence intervals for
the corresponding statistical estimators of the optimal
parameter obtained through the minimization problem.
The Relative Entropy Rate (RER) was earlier pro-

posed as a (pseudo) metric in order to evaluate the con-
vergence of adaptive sampling schemes for Markov State
Models (MSM)5; the proposed coarse-graining perspec-
tive, which is related to Maximum Likelihood Estima-
tors (MLE), e.g., (??), could provide new insights in
comparing MSMs since it only requires fine-scale data–
and not explicitly a fine-scale MSM for estimating the
RER. Furthermore, RER and in particular the path-
space FIM where introduced recently as gradient-free
sensitivity analysis tools for complex, non-equilibrium
stochastic systems with a wide range of applicability
to reaction networks, lattice Kinetic Monte Carlo and
Langevin dynamics33. Unlike the coarse-graining setting
we propose here and where models are set in different
state spaces depending on their granularity, in the latter
work the same state space is assumed between compared
models.
The paper is structured as follows. In Section II we for-

mulate the path-space information theory tools used in
the paper, including the key concept of Relative Entropy
Rate. In Section III we present the parameterization
method of coarse-grained dynamics and the connections
with maximum likelihood estimators and the Fisher In-
formation Matrix. In Section IV we briefly discuss statis-
tical estimators for RER and FIM. Finally, in Section V
we demonstrate the proposed coarse-graining method in
(a) non-equilibrium systems with diffusing interacting
particles, driven by out-of-equilibrium boundary condi-
tions, as well as (b) multi-scale diffusions and their well-
studied corresponding stochastic averaging limits, com-
paring them to our proposed methodologies.

II. RELATIVE ENTROPY RATE, PATH SPACE

INFORMATION THEORY AND ERROR

QUANTIFICATION FOR NON-EQUILIBRIUM SYSTEMS

First, we formulate a general entropy-based error
analysis for coarse-graining, dimensional reduction and
parametrization of high-dimensional Markov processes,
simulated by Kinetic Monte Carlo (KMC) and Langevin
Dynamics. Typically such systems have Non-Equilibrium
Steady States (NESS) for which detailed balance fails as
they are irreversible. The stationary distributions are
not known explicitly and have to be studied computa-
tionally.
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A. Coarse-grained models

We consider a parameterized class of coarse-grained
Markov processes {ηt}t≥0, associated with the fine scale
stochastic process {σt}t≥0. The coarse-graining proce-
dure is based on projecting the microscopic space Σ into
a coarse space Σ̄ with less degrees of freedom. We denote
the coarse space variables

η = Tσ , where T : Σ → Σ̄ (1)

is a coarse-graining (projection) operator, see also (??)
for a specific example. In general, given a fine-scale prob-
ability measure µN (dσ) defined on the fine-grained con-
figuration space Σ, then we can define the exact (renor-
malized) coarse-grained probability measure µ̄app

M (dη) on
the coarse space Σ̄:

µ̄M (dη) =

∫

{σ:Tσ=η}

µN (dσ) . (2)

However, the exact CG probability cannot be explicitly
calculated , except in trivial cases. Typically, we consider
classes of parametric CG models which approximate the
exact CG model, see for instance the quantification of
such approximations using relative entropy20.
In the case of continuous time processes such as Kinetic

Monte Carlo, the coarse-grained stochastic process is de-
fined in terms of coarse transition rates c̄(η, η′) which cap-
tures macroscopic information from the fine scale rates
c(σ, σ′). For example, for stochastic lattice systems, ap-
proximate coarse rate functions are explicitly known from
coarse graining (CG) techniques of10,21,25, see (??). Sim-
ilarly, when we consider temporally discretized stochas-
tic processes such as Langevin Dynamics, the coarse-
grained process is given in terms of transition probabili-
ties p̄(η, η′) which capture macroscopic information from
the fine scale transition probabilities p(σ, σ′).
Interpolated dynamics. Given coarse-grained dynamics
we can always construct corresponding microscopic dy-
namics. For example, given coarse-grained transition
probabilities p̄(η, η′) with corresponding stationary dis-
tribution µ̄, where the latter is typically unknown in non-
equilibrium systems, we define the corresponding fine-
scale rates

q(σ, σ′) := U(σ′|Tσ′)p̄(Tσ,Tσ′) , (3)

where U(σ′|η′) = 1
|{σ:Tσ=η′}| (| · | denotes the cardinality)

is the uniform conditional distribution over all fine-scale
states σ corresponding to the same coarse-grained state
η′. Clearly (??) is properly normalized, while a more
general formulation can be found in Appendix A, (??).
In (??) we apply a piece-wise constant interpolation for
all microscopic states σ (reps. σ′) corresponding to the
same coarse state η (reps. η′) and thus transitions to
these states occur with the same probability rates. The
reconstruction step (??) is necessary when we want to
compare fine and coarse processes on the path space in

terms of the relative entropy rate, since both processes
need to be defined on the same probability space, see
for example (??) below. In this paper, for the sake of
simplicity, we assume that all reconstructions are based
on (??). The reconstruction is obviously not unique and
we refer to Appendix A for the mathematical details, see
also37.

B. Relative Entropy and Error Quantification in

Non-equilibrium Systems

Although all systems we consider here are ergodic, i.e.,
they have a unique steady state distribution, we typically
assume they only have a Non-Equilibrium Steady State
(NESS) due to a lack of detailed balance4. Inevitably, in
such systems the stationary distribution is not known ex-
plicitly and can be studied primarily computationally, at
least in systems which are not small perturbations from
equilibrium. Quantifying and controlling the coarse-
graining error in such high-dimensional stochastic sys-
tems can be achieved by developing computable and ef-
ficient methods for estimating distances of probability
measures on the path space. The relative entropy be-
tween two path measures P[0,T ] and Q[0,T ] (see (??) for a
specific example) for the processes on the interval [0, T ]
is

R
(
P[0,T ] |Q[0,T ]

)
= EP[0,T ]

[
log

dP[0,T ]

dQ[0,T ]

]
, (4)

where
dP[0,T ]

dQ[0,T ]
is the Radon-Nikodym derivative of P[0,T ]

with respect to Q[0,T ]. If these probability measures
have probability densities p, q respectively, (??) becomes

R
(
P[0,T ] |Q[0,T ]

)
=

∫
p log

(
p
q

)
. In the setting of coarse-

graining or model-reduction the measure P[0,T ] is associ-
ated with the exact process and Q[0,T ] with the approxi-
mating (coarse-grained) process.
From an information theory perspective, the relative

entropy measures the loss of information as we approxi-
mate the exact stochastic process P[0,T ] with the coarse-
grained one Q[0,T ]. In general the relative entropy (??)
in this dynamic setting is not a computable object; we
refer for instance to related formulas in the Shannon-
MacMillan-Breiman Theorem,8. However, as we show
next, in practically relevant cases of stationary Markov
processes we can work with the relative entropy rate

H(P |Q) = lim
T→∞

1

T
R

(
P[0,T ] |Q[0,T ]

)
, (5)

where P and Q denote the distributions of the corre-
sponding stationary processes.
Relative Entropy Rate for Markov Chains. In order to
explain the basic concept we restrict to the case of two
Markov chains, {σn}n≥0, {σ̃n}n≥0 on the countable state
space Σ, defined by the transition probability kernels
p(σ, σ′) and q(σ, σ′). A typical example would be the



4

embedded Markov chain used for KMC simulations of
a continuous time Markov chain. Similarly, in the case
of a continuous state space, a temporal discretization of
a Langevin process, leads to a Markov process with the
transition kernel p(σ, dσ′) = p∆t(σ, σ

′) dx′ defined by the
time-discretization scheme of the underlying stochastic
dynamics. We assume that the initial states are from the
invariant distributions µ(σ) and ν(σ). The path measure
defining the probability of a path (σ0, σ1, . . . , σT ) is then

P (σ0, . . . , σT ) = µ(σ0)p(σ0, σ1) . . . p(σT−1, σT ) , (6)

and similarly for the measureQ(σ0, . . . , σT ). The Radon-
Nikodym derivative is easily computed

dP

dQ
=

µ(σ0)
∏T−1

i=0 p(σi, σi+1)

ν(σ0)
∏T−1

i=0 q(σi, σi+1)
.

Using the fact that the processes are stationary with in-
variant measures µ and ν, we obtain an expression for
the relative entropy

R (P |Q) = T Eµ

[
∑

σ′∈Σ

p(σ, σ′) log
p(σ, σ′)

q(σ, σ′)

]
+R (µ | ν) ,

(7)
and thus the relative entropy rate is given explicitly as

H(P |Q) =
∑

σ∈Σ

µ(σ)
∑

σ′∈Σ

p(σ, σ′) log
p(σ, σ′)

q(σ, σ′)
] . (8)

We will refer from now on to the quantity (??) as the
Relative Entropy Rate (RER), which can be thought as
the change in information per unit time. Notice that
RER has the correct time scaling since it is actually in-
dependent of the interval [0, T ]. Furthermore, it has the
following key features that make it a crucial observable
for simulating and coarse-graining complex dynamics:

(i): The RER formula (??) provides a computable ob-
servable that can be sampled from the steady state
µ in terms of conventional Kinetic Monte Carlo
(KMC), bypassing the need for a histogram or an
explicit formula for the high-dimensional probabil-
ities involved in (??).

(ii): In stationary regimes, when T ≫ 1 in (??), the term
R (µ | ν) becomes unimportant. This is especially
convenient since µ and ν are typically not known
explicitly in non-reversible systems, for instance in
reaction-diffusion or driven-diffusion KMC or non-
reversible Langevin dynamics.

In view of these features, we readily see that if we con-
sider a Markov chain {σ̃n}n≥0 as an approximation, e.g.,
a coarse-graining, of the chain {σn}n≥0, we can esti-
mate the loss of information at long times by computing
H(P | P̃ ) as an ergodic average. This observation is the
starting point of the proposed methodology and relies
on the fact that the observable H(P |Q) is computable;

efficient statistical estimators for (??) are discussed in
Section IV. A similar calculation can be carried out for
continuous time Markov Chains, as we see next.
Continuous Time Markov Chains and Kinetic Monte
Carlo. In models of catalytic reactions or epitaxial
growth the systems are often described by continuous
time Markov chains (CTMC) that are simulated by KMC
algorithms. For example, the microscopic Markov pro-
cess {σt}t≥0 describes the evolution of molecules on a
substrate lattice. Mathematically the continuous time
Markov chain is defined completely by specifying the lo-
cal transition rates cθ(σ, σ′) where θ ∈ R

k is a vector
of the model parameters. The transition rates determine
the updates from any current state (configuration) σt = σ
to a (random) new state σ′. In the context of the spa-
tial models considered here, the transition rates take the
form cθ(σ, σ′) = cθ(x, ω, σ), denoting by x ∈ ΛN a lat-
tice site on a d-dimensional lattice ΛN and ω ∈ SNx,
where SNx is the set of all possible configurations that
correspond to an update in a neighborhood of the site
x. From local transition rates one defines the total rate
λθ(σ) =

∑
x∈ΛN

∑
ω∈SNx

cθ(x, ω, σ), which is the inten-
sity of the exponential waiting time for a jump from the
state σ. The transition probabilities for the embedded

Markov chain {Sn}n≥0 are p(σ, σ′; θ) = c(x,ω,σ;θ)
λ(σ;θ) . In

other words once the exponential “clock” signals a jump,
the system transitions from the state σ to a new con-
figuration σ′ with the probability p(σ, σ′). In the con-
text of coarse-graining we are led to finding an optimal
parametrization for the rates c̃(σ, σ′; θ) of a processes
that approximates the dynamics given by the microscopic
process c(σ, σ′). A similar calculation as in the case of
Markov chains gives the analogue of the formula (??)

H(P |Q) = Eµ

[
λ(σ) − λ̃(σ; θ)−

∑

σ′

c(σ, σ′) log
c(σ, σ′)

c̃(σ, σ′; θ)

]
,

(9)
where µ is the stationary distribution of the microscopic
process and λ denotes the total transition rate. In19 we
used this quantity in order to quantify error in a two-
level coarse-grained kinetic Monte Carlo method. Based
on these considerations, we show in Section III that min-
imizing the error measured by (??) leads to a CTMC
coarse-grained dynamics that best approximates long-
time behavior of the microscopic process projected to the
coarse degrees of freedom.

Remark II.1. We consider the special case where the
transition probability function of the Markov chain is
sampled directly from the invariant measure, i.e.,

p(σ, σ′) = µ(σ′), and q(σ, σ′) = ν(σ′), for all σ, σ′ ∈ Σ.

This sampling is equivalent to the fact that the path
space samples in (??) are independent and identically
distributed from the stationary probability distributions.
Then the RER between the path probabilities becomes
the usual relative entropy between the stationary distri-
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butions:

H(P |Q) = R (µ | ν) . (10)

Estimating RER using (??) is far simpler than directly
estimating the relative entropy R (µ | ν), since (??) only
involves local dynamics rather than the full steady state
measure, which typically may not be available. Further-
more even when it is available in the form of a Gibbs state
it will require computations that will typically involve a
full Hamiltonian,7,22.

Remark II.2. We also note that the RER can be written
as a relative entropy, inheriting all its properties8, e.g.,
non negativity, convexity, etc. In fact, we can rewrite
(??) as

H(P |Q) = R (µ⊗ p |µ⊗ q) , (11)

where we define the product probability measures as µ ⊗
p(A×B) =

∑
σ∈A µ(σ)

∑
σ′∈B p(σ, σ′).

Estimation and error of observables. The estimates on
relative entropy and RER can provide an upper bound
for a large family of observable functions through the
Pinsker (or Csiszar-Kullback-Pinsker) inequality. The
Pinsker inequality states that the total variation norm
between P[0,T ] and Q[0,T ] is bounded in terms of the rel-

ative entropy,8. The Pinsker inequality gives an estimate
for a difference of the mean computed with respect to the
distribution P and Q

|EP[0,T ]
[f ]− EQ[0,T ]

[f ]| ≤ ||f ||∞
√
2R

(
P[0,T ] |Q[0,T ]

)
,

(12)
where ||f ||∞ = max |f |. An important conclusion that
is immediately drawn from the above inequality is that
if the relative entropy of a distribution with respect to
another distribution is small then the error between any
bounded observable functions is also accordingly small.
Using (??) we readily obtain the estimate

|EP[0,T ]
[f ]−EQ[0,T ]

[f ]| ≤

||f ||∞
√
2T

√
H(P |Q) +

1

T
R (µ | ν) ,

(13)

involving the relative entropy rate (??) or (??). As in
virtually all numerical analysis estimates for stochastic
dynamical systems, the bound (??) may not be sharp,
but it is indicative of the error in the observables when
the distribution Q approximates P .

III. PARAMETRIZATION OF COARSE-GRAINED

DYNAMICS AND INVERSE DYNAMIC MONTE CARLO

A. Inverse Dynamic Monte Carlo methods.

In many applications the coarse-grained models
are defined by effective potentials or effective rates

which are sought in a family of parameter-dependent
functions,27,30,38. The parameters are then fitted by min-
imizing certain functionals that attempt to capture dif-
ferent aspects of modeling errors, e.g., radial distribution
functions in30. Compared to such Inverse Monte Carlo
methods applied to equilibrium systems we cannot work
directly with equilibrium distributions since the NESS is
not explicitly known. Thus we apply the information-
theoretic framework on the path space, i.e., on the ap-
proximating measure Q[0,T ] ≡ Qθ

[0,T ] that depends on the

parameters θ ∈ R
k, and which are subsequently fitted us-

ing entropy based criteria for the best approximation.
The optimal parametrized coarse-grained transition

probabilities qθ
∗

(σ, σ′) are constructed as follows. First,
given the parametrized coarse-grained transition proba-
bilities p̄θ(η, η′) we define the fine-scale projected rates
qθ(σ, σ′), which can be defined, for instance, by (??) as

qθ(σ, σ′) = U(σ′|Tσ′)p̄θ(Tσ,Tσ′) , (14)

and the corresponding coarse-grained path-distribution
is

Qθ(σ0, . . . , σT ) = µ̄(Tσ0)q
θ(σ0, σ1) . . . q

θ(σT−1, σT ) .
(15)

Subsequently the best-fit can be obtained by minimizing
the relative entropy rate, i.e., finding a solution

θ∗ = argmin
θ

H(P |Qθ) , (16)

where now we have that the RER is

H(P |Qθ) =
∑

σ∈Σ

µ(σ)
∑

σ′∈Σ

p(σ, σ′) log
p(σ, σ′)

qθ(σ, σ′)
] . (17)

This optimization problem on one hand is similar to more
common parametric inference in which the log-likelihood
function is maximized, and this perspective will be fur-
ther clarified in Section III B. Furthermore, due to the
parametric identification of the coarse-grained dynamics,
i.e., transition probabilities, or rates in the case of (??),
we refer to the proposed methodology as an Inverse Dy-
namic Monte Carlo method in analogy to the Inverse
Monte Carlo methods for equilibrium systems,27,30,38.
The optimization algorithm for (??) is based on itera-

tive procedures that locate a solution θ∗ of the optimality
condition ∇θH(P |Qθ) = 0

θ(n+1) = θ(n) − α

n
G(n+1) , (18)

for some α > 0 and G(n+1) being a suitable approx-
imation of the gradient ∇θH(P |Qθ), more precisely
E[G(n+1) |G(0), θ(0), . . . , G(n), θ(n)] = ∇θH(P |Qθ). The
crucial ingredient of this algorithm is an efficient and
reliable estimator for the sequence G(n) of the gradient
estimates. Similar to the deterministic case the mini-
mization can be accelerated by combining this step with
the Newton-Raphson method and choosing the vector G
as

Gn = Hess(H(P |Qθn

))−1∇θH(P |Qθn

) . (19)
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While the evaluation of the Hessian Hess(H(P |Qθn

))
presents an additional computational cost, it also offers
additional information about the parametrization, sensi-
tivity and identifiability of the approximating model,33.
Indeed the first and the second derivatives of the rate
function H(P |Qθn

) are of the form:

∇θ(H(P |Qθ)) = −Eµ

[
∑

σ′

p(σ, σ)∇θ log q
θ(σ, σ′)

]
,

(20)
and FH

(
Qθ

)
= Hess(H(P |Qθ)), where

FH

(
Qθ

)
= −Eµ

[
∑

σ′

p(σ, σ)∇2
θ log q

θ(σ, σ′)

]
. (21)

The Hessian can be interpreted as a dynamic analogue
of the Fisher Information Matrix (FIM) FH

(
Qθ

)
on the

path space. A similar quantity, in the context of sensi-
tivity analysis, was recently considered in33, where the
authors also developed efficient statistical estimators for
the derivatives of RER ∂θkH(P |Qθ) and ∂2

θiθj
H(P |Qθ).

We discuss related estimators in Section IV.

Remark III.1. The proposed approach carries sufficient
level of generality in order to be applicable to a wide
class of stochastic processes, e.g., Langevin dynamics and
KMC, without restriction to the dimension of the sys-
tem, provided scalable efficient simulators are available
to simulate the observables, (??) and (??). The pro-
posed parametrized coarse-graining is applicable to any
system for which a parametrized coarse-grained models
are available, e.g., in coarse-graining of macromolecules
and biomembranes,30,32,38. An obvious obstacle is that
the path measure P[0,T ] is absolutely continuous with re-
spect to Q[0,T ], however, it does not significantly restrict
the class of relevant applications as we typically deal with
KMC or Markov Chain approximations resulting from a
discretization of Molecular Dynamics with noise. In the
latter case, Markov chains obtained by numerical approx-
imations of stochastic differential equations (SDEs) allow
us to compute RER through (??) and can be used for
quantification of errors or inverse Monte Carlo fitting for
non-equilibrium or irreversible models in Section III.
For example, the overdamped molecular dynamics

with positions x ∈ R
d and the forcefield a(x) ∈ R

d at
the inverse temperature β > 0 is a diffusion process Xt

given by the stochastic differential equations driven by
the d-dimensional Wiener process Wt

dXt = a(Xt) dt+
√
2β−1dWt , X0 = x .

We assume that the drift field a(x) satisfies standard
conditions that guarantee existence of solutions for all
X0 = x and the process is ergodic with the stationary
distribution µ(x) dx. The stochastic differential equation
can be discretized by the Euler scheme with the time-step

h

Xn+1 = Xn + a(Xn)h+
√
2β−1Z

√
h , (22)

where Z ∼ N(0, 1) is a random increment from the stan-
dard normal distribution. The Euler scheme discretiza-
tion defines the Markov chain Xn with the transition
kernel

ph(x, x
′)dx′ ∼ e−

β
h
|x′−x−ha(x)|2x.

′ .

The time-continuous case presents technical difficulties
that we do not address here, instead we demonstrate
application of the proposed method at the level of the
approximating Markov chain only. The case where the
process is driven by a multiplicative noise σ(Xt)dWt can
be handled in a similar way using a discrete scheme. For
the sake of simplicity we define the coarse-graining oper-
ator Π as an orthogonal projection from the state space
R

d to a subspace R
m, and we write x = Πx + Π

⊥x,
denoting x̄ ≡ Πx ∈ R

m, x̃ ≡ Π
⊥x ∈ R

d−m. The re-
duced model is then viewed as an approximation of the
projected Markov chain

ΠXn+1 = ΠXn +Πa(Xn)h+
√
2β−1ΠZ

√
h , (23)

by

X̄n+1 = X̄n + ā(X̄n; θ)h+
√
2β−1Z̄

√
h , (24)

where the Gaussian increments are Z̄ ∼ N(0,ΠΠ
T ).

Denoting ∆(x) ≡ x + a(x)h and ∆θ(x̄) ≡ x̄ + ā(x̄; θ)h
the drift increments in (??) and (??) respectively we
have the transition kernel of X̄n given by p̄h(x̄, x̄

′; θ) ∼
e−

β
h
|x̄′−∆θ(x̄)|2 dx̄′. Given the transition kernel p̄h of the

coarse-grained chain X̄n we define, similarly as in (??),
the transition kernel of a reconstructed chain on the orig-
inal state space R

d

qh(x, x
′; θ) = p̄h(Πx,Πx′; θ)ν(x′|Πx′) .

As long as the reconstruction measure ν does not depend
on the parameters θ the particular choice of ν does not
enter the optimality condition for H(P |P θ). Hence the
relative entropy rate is given by

H(P |P θ) =

∫ ∫
µ(x)ph(x, x

′) log
ph(x, x

′)

qh(x, x′; θ)
x.
′x. . (25)

Note that due to the choice of the orthogonal projection
Π the transition kernel for (??) of the full model becomes

ph(x, x
′) =

1

Z̄
e−

β
h
|Πx′−Π∆(x)|2 dx̄′× 1

Z̃
e−

β
h
|Π⊥x′−Π

⊥∆(x)|2 dx̃′ ,

and this factorization into a product simplifies the eval-
uation of the necessary condition for a minimizer of
minθ H(P |P θ). Removing the terms that are indepen-
dent of θ we have
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∇θ

∫ ∫
β

hZ̄
e−

β
h
|Πx′−Π∆(x)|2|Πx′ −Π∆θ(Πx)|2 dx̄′ µ(x)x. = ∇θ

∫
|∆θ(Πx) −Π∆(x)|2µ(x) dx = 0 . (26)

In other words the minimization of H(P |P θ) is equiva-
lent to the minimization

min
θ∈Rn

∫
|Πa(x)− ā(Π(x); θ)|2µ(x) dx . (27)

The minimization becomes particularly straightforward
when the parametrization of the coarse-grained drift is
chosen as an approximation over the set of polynomials
{φk(x̄)}nk=1, i.e., ā(x̄; θ) =

∑
k θkφk(x̄). In such a case

the minimization of the entropy rate functional defines
the projection on the subspace span{φk(x̄)}nk=1 in the
space L2(µ), i.e., the least-square fit with respect to the
stationary measure µ. The functional H(P |P θ) is then
convex in θ and the problem has the unique solution θ∗ =
(θ∗1 , . . . , θ

∗
n) which is the solution of the linear system

Φθ = a , where Φij = Eµ[φiφj ] and ai = Eµ[Πaφi].

The expected values can then be estimated as ergodic
averages on a single trajectory realization of the orig-
inal process Xt as t → ∞. The parametrization
scheme in13 proposed in the context of the Fokker-Planck
equation is an example of the proposed method for re-
versible stochastic differential equations, i.e., those hav-
ing a Gibbs steady state. Application of the proposed
method to the diffusion process also shows that widely
applied “force-matching” method,16,17,31, used in com-
putational coarse-graining is the best-fit in the sense of
entropy rate minimization.

B. Path-space likelihood methods and data-based

parametrization of coarse-grained dynamics

A different, and asymptotically equivalent perspective
on parametrizing coarse-grained dynamics relies on view-
ing the microscopic simulator as means of producing sta-
tistical data in the form of a time-series. Although the
proposed method can be applied to systems simulated by
Langevin-type dynamics we demonstrate its application
in the Kinetic Monte Carlo algorithms in Section V. The
primary new element of the presented coarse-graining ap-
proach lies in deriving the parametrization by optimizing
the information content (in path-space) compared to the
available computational data from a fine-scale simulation,
taking advantage of computable formulas for relative en-
tropy discussed earlier.
More specifically, we consider a fine-scale data set of

configurations D = {σ1, σ2, ..., σN} obtained for example
from a fine-scale KMC algorithm. As is typical in the
KMC framework, we assume that the atomistic model
can be described by a spatial, continuous-time Markov
jump process,36. The path-space measure of this KMC
process, see for the Markov Chain analogue of the path

measure (??), is parametrized as P = P θ. In this sense
we assume that for the particular data set D the “true”
parameter value is θ = θ∗. Identifying θ∗ amounts, math-
ematically, to minimizing the pseudo-distance given by
the relative entropy, minθ R(P θ∗ |Qθ). Furthermore, fol-
lowing (??) it suffices to minimize H(P θ∗ |Qθ). On the
other hand, using the ergodicity of the fine scale pro-
cess associated with the data set D = {σ1, σ2, ..., σN},
we have the estimators

H(P θ∗ |Qθ) = lim
N→∞

ĤN (P θ∗ |Qθ) (28)

where we define the unbiased estimator for RER, see Sec-
tion IV,

ĤN (P θ∗ |Qθ) :=
1

N

N∑

i=1

log
pθ

∗

(σi, σi+1)

qθ(σi, σi+1)
, (29)

and qθ(σ, σ′) is defined in (??). For simplicity in notation
we only demonstrate the estimator (??) for the Markov
Chain case, where pθ(σ, σ′) denotes the transition prob-
ability. The continuous-time case, which is relevant to
the coarse-grained KMC simulations in Section V, is ob-
tained similarly using (??).
Therefore, the minimization of RER becomes

min
θ

ĤN (P θ∗ |Qθ) =max
θ

1

N

N∑

i=1

log qθ(σi, σi+1)

− 1

N

N∑

i=1

log pθ
∗

(σi, σi+1) ,

(30)

which does not require (a) a priori the knowledge of θ∗,
(b) the microscopic reconstruction defined by U(σ′|Tσ′)
in (??) since U(σ′|Tσ′) is independent of θ. Therefore,
we define the coarse-grained path space Likelihood maxi-
mization as

max
θ

L(θ; {σi}Ni=0) := max
θ

1

N

N∑

i=1

log p̄θ(Tσi,Tσi+1) .

(31)
Note that if the transition probabilities in (??) are re-
placed with a stationary measure and N correspond-
ing independent samples D = {σ1, σ2, ..., σN}, then
(??) becomes the classical Maximum Likelihood Prin-
ciple (MLE). In this sense (??) is a Maximum Likeli-
hood for the coarse-graining of the stationary time se-
ries, D̄ = {Tσ1,Tσ2, ...,TσN} of the fine-scale process,
and thus includes dynamics information. Furthermore,
due to the stationarity of the time series, it allows us
(if necessary) to obtain the Markovian best-fit from the
dynamical simulation and observations on a single, long-
time realization of the process.
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Fisher Information Matrix and Confidence Intervals.
The Fisher Information Matrix (FIM) in (??) is clearly
computable as an ergodic average and can provide confi-

dence intervals for the corresponding estimator θ̂N ≈ θ∗,
based on the asymptotic normality of the MLE estima-

tor θ̂N . Indeed, under additional mild hypotheses on
the samples D = {σ1, σ2, ..., σN}, this general procedure
guarantees convergence in analogy to the central limit
theorem, by employing a martingale formulation,9. In a
much simpler context, when consecutive pairs σi, σi+1 in
the FIM estimator, e.g., (??), are sampled beyond the
decorrelation time of the time series, the usual central
limit theorem applies and yields the asymptotic normal-
ity result

θ̂N → θ∗ a.s. and N1/2(θ̂N − θ∗)⇀N(0,FH
−1(Qθ∗

)),
(32)

where the variance is determined by the Fisher Informa-

tion Matrix FH

(
Qθ∗)

, or asymptotically by FH

(
Qθ̂N

)
.

Thus estimating the FIM FH

(
Qθ̂N

)
using (??) provides

rigorous error bars on computed optimal parameter val-
ues θ∗.

IV. STATISTICAL ESTIMATORS FOR RER AND FIM

The Relative Entropy Rate (??), as well as the Fisher
Information Matrix (??) are observables of the stochas-

tic process and can be estimated as ergodic averages.
Thus, both observables are computationally tractable
since they depend only on the local transition quantities.
We give explicit formulas for the case of the continuous-
time Markov chain.

The first estimator for RER is given by

Ĥ(n)
1 (P |Qθ) =

1

T

n−1∑

i=0

∆τi

[ ∑

σ′∈E

c(σi, σ
′)

× log
c(σi, σ

′)

cθ(σi, σ′)
−
(
λ(σi)− λθ(σi)

)]
,

(33)

where ∆τi is an exponential random variable with pa-
rameter λ(σi) while T =

∑
i∆τi is the total simulation

time. The sequence {σi}ni=0 is the embedded Markov

chain with transition probabilities p(σi, σ
′) = c(σi,σ

′)
λ(σi)

at

the step i and cθ(σi, σ
′) are the rates of the parametrized

process, e.g., the coarse-grained rates cθ(Tσi, σ
′). Notice

that the weight ∆τi which is the waiting time at the state
σi at each step, is necessary for the correct estimation of
the observable,15. Similarly, the estimator for the FIM is

F̂
(n)
1 =

1

T

n−1∑

i=0

∆τi
∑

σ′∈E

cθ(σi, σ
′)∇θ log c

θ(σi, σ
′)∇θ log c

θ(σi, σ
′)T . (34)

The computation of the local transition rates c(σi, σ
′)

for all σ′ ∈ E is needed for the simulation of the
jump Markov process when Monte Carlo methods such
as stochastic simulation algorithm (SSA),15 is utilized.

Thus, the estimators Ĥ(n)
1 and F̂

(n)
1 present only a minor

additional computational cost in the simulation.
The second numerical estimator for RER is based

on the Girsanov representation of the Radon-Nikodym
derivative and it is given by

Ĥ(n)
2 (P |Qθ) =

1

n

n−1∑

i=0

log
c(σi, σi+1)

cθ(σi, σi+1)

− 1

T

n−1∑

i=0

∆τi
(
λ(σi)− λθ(σi)

)
.

(35)

Similarly we can construct an FIM estimator. The term
in (??) involving logarithms should not be weighted since
the counting measure is approximated with this estima-
tor. Unfortunately, the estimator (??) has the same com-
putational cost as (??) due to the need for the compu-

tation of the total rate which is the sum of the local
transition rates. Furthermore, in terms of the variance,
the latter estimator has worse performance due to the
discarded sum over the states σ′. For more details we
also refer to33.

V. BENCHMARKS

Example I: coarse-grained driven Arrhe-

nius diffusion of interacting particles. Non-
equilibrium systems at transient or steady state regimes
are typical in applied science and engineering, and are
the result of coupling between different physicochemical
mechanisms, driven by external couplings or boundary
conditions. For example reaction-diffusion systems in
heteroepitaxial catalytic materials,36 are typically non-
reversible, i.e., their steady state is not a Gibbs distribu-
tion. This is due to the fact that different mechanisms
between species (reaction, diffusion, adsorption, etc.) do
not have a common Hamiltonian and thus a common in-



9

variant distribution. Instead, a steady state distribution
exists but it is a NESS and is typically not known. Sim-
ilarly separation processes in microporous materials are
typically driven by boundary conditions and/or coupled
flows35, so the steady state is not necessarily a Gibbs
state, but it is again an unknown NESS.
We demonstrate the proposed methodology by select-

ing a simple but illustrative system in the latter class of
non-equilibrium problems. We consider an example of
a driven, non-equilibrium diffusion process of interacting
particles formulated as a lattice gas model with spin vari-
ables σ(x) ∈ {0, 1}, corresponding to occupied or empty
lattice sites x ∈ ΛN ; here ΛN denotes a uniform one
dimensional lattices with N sites. This is a prototype
driven system introduced as a model problem for the in-
fluence of microscopic dynamics to macroscopic behavior
in driven separations problems in39. This model prob-
lem is also intimately related to works on the structure
of non-equilibrium steady states (NESS),12,34, as well as
to the general formalism of non-equilibrium statistical
mechanics,4,18.
The evolution of particles is described in the context

of the lattice-gas model as an exchange dynamics with
the Arrhenius migration rate from the site x ∈ ΛN to
the nearest-neighbor sites |y − x| = 1

c(x, y, σ) = d e−βU(x,σ)σ(x)(1 − σ(y)) ,

which describes the diffusion of a particle at x mov-
ing to y and interacting through a two-body potential
J(x− y) and an external field h, defining an energy bar-
rier U(x, σ) =

∑
z 6=x J(x − z)σ(z) − h. The continuous-

time Markov chain is defined by its rates and updates
to new configurations σx,y in which the spin variables
σ(x) and σ(y) exchanged its values. Finally, the system
is driven by the concentration gradient given by different
concentrations at the boundary sites x = 0 and x = N .
In the long time behavior the distribution converges to a
stationary distribution that gives rise to a NESS concen-
tration profile across the computational domain39, see
also Figure 1.
Next we discuss the parametric family of coarse-

grained models we will use. Under the assumption of a
local equilibrium a straightforward local averaging yields
the coarse-grained rates,25,

c̄(k, l, η) =
1

q
η(k)(q − η(l))d e−βŪ(k,η) , (36)

for the lattice-gas model with local concentrations η(k)
defined as the number of particles in a coarse cell Ck

of (lattice) size q. Thus we have M coarse cells, where
N = qM . In fact, according to (??) we define the coarse
graining operator

η(k) = Tσ(k) =
∑

x∈Ck

σ(x) , (37)

where η(k) ∈ {0, . . . , q}. Keeping the two-body inter-
actions as a basis for the coarse-grained approximation
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FIG. 1: Coarse-grained simulations of driven diffusion
of interacting particles without (a) and with (b) fitted

effective interactions.

the effective potentials between block spins k and l are
obtained by a straightforward spatial averaging

J̄(k, l) =
1

q2

∑

x∈Ck

∑

y∈Cl

J(x− y) ,

J̄(k, k) =
1

q(q − 1)

∑

x∈Ck

∑

y∈Ck

J(x− y) .

(38)

Assuming that the approximating dynamics is of Arrhe-
nius type we obtain the energy barriers

Ū(k, η) =
∑

l

J̄(k, l)η(k) + J̄(0, 0)(η(k)− 1)− h̄ .
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The resulting dynamics is a Markovian approximation of
the coarse-grained evolution and it is defined as CTMC
with the rates c̄(k, l, η).

As a prototype example of the interactions we con-
sider the constant potential J(x) = J0 for |x| ≤ L and
J(x) = 0 otherwise. This coarse-grained potential is
parametrized by a single parameter θ ≡ J̄0 corresponding
to the strength of the coarse-grained interactions.

First we note that he local mean-field approximation
which defines the interaction potential J̄(k − l) in (??)
between two block spins η(k) and η(l) by averaging con-
tributions from all spin-spin interactions in the cells does
not provide a good approximation as demonstrated in
Figure 1(a), where the inset depicts the error estimated in

terms of the entropy rate H(P | P̃ ). However, the mean-
field potential J̄ is a good initial datum for (??).

In this benchmark we stay in the family of two-body
potentials and chose to fit only a single parameter that
defines the total strength of the interaction. Thus the
rates are parametrized by the effective potential J̄(·; θ)
using the single parameter θ ≡ J̄0, keeping the interac-
tion range L fixed in each set of simulations. Clearly we
could consider much richer families with parametrized
potentials, e.g., of Morse or Lennard-Jones type, how-
ever, we opt for the simplest parametrizations in order
to demonstrate with clarity the proposed methods. The
best-fit was obtained by solving the optimization problem
(??), hence, minimizing the error defined by H(P | P̃ θ),
see Figure 2(a) and Figure 2(b). Figure 1(b) depicts con-
centration profiles for different sizes q of the coarse cells.
The dashed lines represent results from simulations with
mean-field interactions between cells only (i.e., the initial
guess in the optimization), while the solid lines represent
simulations with the parametrized effective interactions.

Comparison with the profile obtained from the mi-
croscopic simulation (the solid black line) clearly indi-
cates that when the coarse-graining size q becomes close
to the interaction range L of the microscopic poten-
tial J the best-fit in a one-parameter family is not suf-
ficient for obtaining good approximation and a better
candidate class of models, in this case coarse-grained
(CG) dynamics c̄(k, l, η), needs to be found for improved
parametrization. Indeed, in1,23 we showed that coarse
grained, multi-body cluster Hamiltonians provide such
a parametrization. More specifically, in23 we demon-
strated, through rigorous cluster expansions that (typi-
cal in the state-of-the-art) two-body CG approximations
break down in lower temperatures and/or for short range
particle-particle interactions, and additional multi-body
CG terms need to be included in the models in order the
CG model to capture accurately phase transitions and
other physical important properties. Hence, a specific
parametrization cannot consistently address this issue on
its own, unless the proper classes of parametric models
are first identified. The RER computations such as the
one depicted in Figure 2(b) can assess the accuracy of
different coarse-grained dynamics within the same para-
metric family (shown here), as well as determine the com-

parative coarse-graining accuracy of different parametric
families.
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(a) Convergence of the estimator θ̂n to the optimal
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FIG. 2: Minimization of H. The figure (a) depicts

convergence of the estimators for θ̂n and the gradient
(derivative) ∇θH to the optimal value θ∗ and the
optimality condition ∇θH(θ∗) = 0. The right plots
depict convergence of confidence intervals for the

estimators. The figure (b) demonstrates the convexity
of H with respect to θ which holds due to the particular

choice θ ≡ βJ̄0 in the benchmark.

Example II: Two-scale diffusion process and

averaging principle. In the second example we
demonstrate the parametric approximation of the coarse-
grained process on a system of two stochastic differential
equations with slow and fast time scales

dXǫ
t = a(Xǫ, Y ǫ)dt+ dW 1

t (39)

dY ǫ
t = ǫ−1b(Xǫ, Y ǫ)dt+ ǫ−1/2dW 2

t , (40)

where W 1
t , W 2

t are independent standard Wiener pro-
cesses. Under suitable assumptions on a, b (see11,14) the
dynamics Y ǫ

t with x held fixed has a unique invariant
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measure µǫ
x(dy) and as ǫ → 0 we have the effective dy-

namics for the process X̄t given by

dX̄t = ā(X̄t) + dWt . (41)

The drift ā is given by the averaging principle

ā(x) = lim
ǫ→0

∫
a(x, y)µǫ

x(dy) .

In this example we choose the component x as the coarse
variable and compute an approximation of the drift āǫ(x)
for the coarse-grained (projected) process Xǫ

t . The aver-
aging principle suggests that āǫ → ā as ǫ → 0.
For the specific choice

a(x, y) = −y , and b(x, y) = y − x ,

we have that µǫ
x(dy) = 1

Z exp(− 1
2 (y − x)2)dy where

Z is the normalizing constant and thus ā(x) =
− 1

Z

∫
y exp(− 1

2 (y − x)2)dy = −x which yields the effec-
tive dynamics in the limit ǫ → 0. In the computational
benchmarks we thus compare stationary processes result-
ing as t → ∞ in solving

dXǫ
t = −Y ǫ

t dt+ dW 1
t , the two-scale model, (42)

dY ǫ
t = ǫ−1(Y ǫ

t −Xǫ
t )dt+ ǫ−1/2dW 2

t ,

dX̄ǫ
t = −

K∑

k=1

θkφ(X̄
ǫ
t ) dt+ dWt , CG model, (43)

dX̄t = −X̄tdt+ dWt , asymptotic at ǫ → 0. (44)

The proposed method for approximating the coarse-
grained dynamics constructs an effective potential
āǫ(x) =

∑
k θkφk(x) for a finite value ǫ > 0. The

set of interpolating polynomials has been chosen to be
{1, x, x2, x3, x4} in this example. It is expected that as
ǫ → 0, the approximation āǫ approaches the averaged
coefficient ā(x) = −x.
The simulation results depicted in Figure 3 demon-

strate that in the case of sufficient time-scale separation,
ǫ = 0.005, the coarse-grained model well approximates
the invariant distribution as well as the autocorrelation
function for stationary dynamics of the component Xt.
Furthermore, the drift āǫ(x) of the coarse-grained dy-
namics deviates by a small error (see Figure 5) from the
drift ā(x) of the averaged model. On the other hand, for
a larger value ǫ = 0.5, where the averaging principle does
not apply, the proposed method yields a coarse-grained
model (an “effective dynamics”) which still approximates
reasonably well the invariant distribution. However, the
dynamics of the stationary process X̄ǫ

t does not approxi-
mate properly the stationary behaviour of the slow com-
ponent Xǫ

t of the original process, as demonstrated in
Figure 4 by comparison of autocorrelation functions.

Remark V.1. The fact that the approximating coarse-
grained process X̄ǫ

t is asymptotically close to the process
X̄t resulting from the averaging principle is a natural con-
sequence of the proposed fitting method. We give here
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only a brief heuristic justification: the invariant distri-
bution of the system (39) is µǫ(dx dy) = µ̄ǫ(dx)µ(dy|x)
where µ̄ǫ is the (unknown) stationary distribution of a
hidden effective dynamics. Under the assumption ǫ ≪ 1
we have µǫ(dx dy) ≈ µ̄(dx)µx(dy) where µx(dy) is the
invariant distribution of the process Y ǫ

t for fixed x. Thus
the optimization problem (??) becomes for ǫ → 0

min
ā

∫
|a(x, y)− ā(x)|2µx(dy)µ̄(x) dx , (45)
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CG fitted āǫ, ǫ = 5.0e− 03
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coarse-grained model (44) for different values of ǫ with
the averaged drift ā(x) in the asymptotic model (43).

which has the unique minimizer

ā(x) =

∫
a(x, y)µx(dy) . (46)

VI. CONCLUSIONS

We developed parametrized model reduction meth-
ods with controlled-fidelity for the efficient and reli-
able coarse-graining of non-equilibrium molecular sys-
tems. Such systems are commonplace across all molec-
ular and multi-physics models and arise as the result of
coupling between different physical mechanisms, scales,
external forcing, and boundary conditions. The method-
ology is based on concepts from path space informa-
tion theory such as the Relative Entropy Rate (RER)
and allows for constructing optimal parametrized Marko-
vian coarse-grained dynamics within a given parametric
family. The identification of the optimal parameters is
achieved by minimizing information loss–due to coarse-
graining–on the path space. Furthermore, a path-space
analogue of the Fisher Information Matrix can be derived
from RER and provides confidence intervals for the cor-
responding parameter estimators. We demonstrate the
proposed coarse-graining methods in (a) non-equilibrium
systems with diffusing interacting particles, driven by
out-of-equilibrium boundary conditions, and (b) multi-
scale diffusions and their corresponding stochastic av-
eraging limits, and show that the proposed RER-based
methodology can assess and improve the accuracy of dif-
ferent coarse-grained dynamics within the same paramet-
ric family. Finally, we expect that by employing system-
atically derived, e.g., via cluster expansions,1,23, classes
of parametric families of models, we can systematically
assess accuracy vs. computational cost of more complex
coarse-grained models, e.g., by including computation-
ally costly multi-body interactions. The latter issue will

be addressed in upcoming work.

Appendix A: Microscopic reconstruction

In this Appendix we discuss the reconstruction pro-
cedure in (??). Reversing the coarse-graining, i.e., re-
producing microscopic (fine-scale) properties, directly
from coarse-grained (CG) simulations is an issue that
arises extensively in the coarse-graining literature, e.g.,30.
The principal idea is that computationally inexpensive
CG simulations will reproduce the large-scale structure
and subsequently microscopic information will be added
through microscopic reconstruction. Current approaches
address primarily the equilibrium case and rely on con-
ditioning on CG variables and subsequently carrying out
a local equilibrium relaxation of the microscopic system.
We next provide a general mathematical framework for

the reconstruction of fine-scale distributions or transition
probabilities (??), from coarse-scale models. For con-
creteness we focus on reconstructing a fine-scale proba-
bility measure µN (dσ) defined on the fine-grained config-
uration space Σ, from a CG probability measure µ̄app

M (dη)
defined on the coarse space Σ̄.
First we define

µ̄M (dη) =

∫

{σ:Tσ=η}

µN (dσ)

as the exact coarse-grained measure defined also in (??).
Then, through the relation

µN (dσ) ≡ µN (dσ|η)µ̄M (dη) , (A1)

we define the conditional probability µN (dσ|η). In the
sense of (??), we can view µN (dσ|η) as the (perfect)
reconstruction of µN (dσ) from the exactly CG measure
µ̄M (dη) defined in (??). Although many fine-scale con-
figurations σ correspond to a single CG configuration
η, the “reconstructed” conditional probability measure
µN (dσ|η) is uniquely defined, given the microscopic and
the coarse-grained measures µN (dσ) and µ̄M (dη) respec-
tively.
A coarse-graining scheme provides an approximation

µ̄
app
M (dη) for µ̄M (dη). The approximation µ̄

app
M (dη) could

be, for instance, the schemes discussed in Section V.
To provide a reconstruction we need to lift the measure
µ̄
app
M (dη) to a measure µ

app
N (dσ) on the microscopic con-

figurations. That is, we need to specify a conditional
probability νN (dσ|η) and set

µ
app
N (dσ) := νN (dσ|η)µ̄app

M (dη) . (A2)

In the spirit of our earlier discussion on using relative
entropy to quantify the quality of approximation in CG
schemes, it is natural to measure the efficiency of the re-
construction by the specific relative entropyR (µapp

N |µN ).
A simple computation8 shows that



13

R (µapp
N |µN ) = R (µ̄app

M | µ̄M ) +

∫
R (νN (·|η) |µN (· | η)) µ̄app

M (dη) , (A3)

i.e., relative entropy splits the total error at the micro-
scopic level into the sum of the error at the coarse level
and the error made during the reconstruction.
The first term in (??) can be controlled, for exam-

ple, by error analysis results on the coarse variables20,23.
In order to obtain a suitable reconstruction we then
need to construct νN (dσ | η) such that (a) it is eas-
ily computable and implementable, and (b) the error
R (νN (dσ | η) |µN (dσ | η)) should be of the same order
as the first term in (??).

Example: The simplest example of reconstruction for a
microscopic system µ(dσ) with a coarse-grained proba-
bility distribution µ̄

app
M (dη) is obtained by

µapp(σ) := U(σ|η)µ̄app(η) , (A4)

where U(σ′|η′) = 1
|{σ:Tσ=η′}| is the uniform conditional

distribution over all fine-scale states σ corresponding to
the same coarse-grained state η′. i.e., we first sample
the CG variables η using the CG probability; then we re-
construct the microscopic configuration σ by distributing
the particles uniformly on the coarse cell, conditioned on
the value of η. More accurate, but computationally more
demanding schemes were proposed in19,37.
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18Jakšić, V., Pillet, C.-A., and Rey-Bellet, L.,
Nonlinearity 24, 699 (2011).

19Kalligiannaki, E., Katsoulakis, M. A., Plechac, P., and Vlachos,
D. G., J. Comp. Physics 231, 2599 (2012).
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