
University of Massachusetts Amherst

From the SelectedWorks of Markos Katsoulakis

2012

A Relative Entropy Rate Method for Path Space
Sensitivity Analysis of Stationary Complex
Stochastic Dynamics
Yannis Pantazis
Markos Katsoulakis, University of Massachusetts - Amherst

Available at: https://works.bepress.com/markos_katsoulakis/51/

http://www.umass.edu
https://works.bepress.com/markos_katsoulakis/
https://works.bepress.com/markos_katsoulakis/51/


ar
X

iv
:1

21
0.

72
64

v1
  [

m
at

h-
ph

] 
 2

6 
O

ct
 2

01
2

A Relative Entropy Rate Method for Path Space Sensitivity Analysis of Stationary Complex Stochastic
Dynamics
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We propose a new sensitivity analysis methodology for complex stochastic dynamics based on the Relative
Entropy Rate. The method becomes computationally feasible at the stationary regime of the process and
involves the calculation of suitable observables in path space for the Relative Entropy Rate and the cor-
responding Fisher Information Matrix. The stationary regime is crucial for stochastic dynamics and here
allows us to address the sensitivity analysis of complex systems, including examples of processes with com-
plex landscapes that exhibit metastability, non-reversible systems from a statistical mechanics perspective,
and high-dimensional, spatially distributed models. All these systems exhibit, typically non-gaussian station-
ary probability distributions, while in the case of high-dimensionality, histograms are impossible to construct
directly. Our proposed methods bypass these challenges relying on the direct Monte Carlo simulation of rigor-
ously derived observables for the Relative Entropy Rate and Fisher Information in path space rather than on
the stationary probability distribution itself. We demonstrate the capabilities of the proposed methodology
by focusing here on two classes of problems: (a) Langevin particle systems with either reversible (gradient) or
non-reversible (non-gradient) forcing, highlighting the ability of the method to carry out sensitivity analysis in
non-equilibrium systems; and, (b) spatially extended Kinetic Monte Carlo models, showing that the method
can handle high-dimensional problems.

Keywords: Sensitivity analysis, Relative entropy rate, Fisher information matrix, kinetic Monte Carlo, Markov
processes, Langevin equations

I. INTRODUCTION

In this paper we propose the Relative Entropy Rate
as a sensitivity analysis tool for complex stochastic dy-
namics, based on information theory and non-equilibrium
statistical mechanics methods. These calculations be-
come computationally feasible at the stationary process
regime and involve the calculation of suitable observables
in path space for the Relative Entropy Rate and the cor-
responding Fisher Information Matrix. The stationary
regime, i.e. stochastic dynamics where the initial proba-
bility distribution is the stationary distribution reached
after long-time integration, is especially crucial for com-
plex systems: it includes dynamic transitions between
metastable states in complex, high-dimensional energy
landscapes, intermittency, as well as Non Equilibrium
Steady States (NESS) for non-reversible systems, while
at this regime we also construct phase diagrams for com-
plex systems. Hence their sensitivity analysis is a cru-
cial question in determining which parameter directions
are the most/least sensitive to perturbations, uncertainty
or errors resulting from parameter estimation. Recently
there has been significant progress in developing sensi-
tivity analysis tools for low-dimensional stochastic pro-
cesses at the transient regime, such as well-mixed chem-
ical reactions. Some of the mathematical tools included
discrete derivatives1, Girsanov transformations2,3, poly-
nomial chaos4, and coupling of stochastic processes5.
On the other hand, it is often the case that we are in-

terested in the entire probability density function (PDF),
which in nonlinear and/or discrete systems is typically
non-Gaussian, and not only in a few moments, due to

the significance of rare/tail events. For example, it was
recently shown that in catalytic reactions the most ki-
netically relevant configurations are occurring rarely, and
correspond to overlapping tails of (non-Gaussian) PDFs6.
In that latter direction, there is a broad recent literature
relying on information theory tools, where sensitivity is
estimated by using the Relative Entropy and the Fisher
Information between PDFs, see for instance7–11. In par-
ticular, such methods were introduced for the study of
the sensitivity of PDFs to parameters in climate models9;
there the PDFs structure is known as it is obtained
through an entropy maximization subject to constraints.
Knowing the form of the PDF allows to carry out cal-
culations such as obtaining a Fisher Information Ma-
trix (FIM), which in turn identifies the most sensitive
parameter directions. On the other hand, the sensitiv-
ity of stochastic dynamics can be studied by using the
FIM11. There the authors are employing a linearization
of the stochastic evolution around the nonlinear mean
field equation and as a result the form of the PDF is again
known, and more precisely it is Gaussian hence the FIM
can be directly computed. Although there are regimes
where this approximation is applicable (short times, sys-
tems with a single steady state, etc.), for systems with
nontrivial long-time dynamics, e.g. metastable, it is not
correct as large deviation arguments12 show, or even
explicitly available formulas for escape times13. Simi-
lar issues with non-gaussianity in the long time dynam-
ics arise in stochastic systems with strongly intermittent
behavior14.

Some of these challenges will be addressed through
the proposed methods which we present next in the con-
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text of kinetic Monte Carlo models although similar chal-
lenges and ideas are relevant to all other stochastic molec-
ular simulation methods. For example, we discuss in
Section V.C the sensitivity of algorithms for the numeri-
cal integration of Langevin dynamics. Moreover, kinetic
Monte Carlo methods involving surface chemistry are
formulated in terms of continuous time Markov chains
(jump processes) on a spatial lattice domain ΛN : at
each lattice site x ∈ ΛN there is a state space Σ =
{0, 1, . . . ,K} describing different chemical species (inter-
acting particles), where the simplest case K = 1 repre-
sents the well-known lattice-gas model15. The process σt

is defined as a continuous time Markov Chain (CTMC)
on the (high-dimensional) state space SN = ΣΛN and
mathematically it is defined completely by specifying the
local transition rates cθ(σ, σ′) where θ ∈ R

k is a vector
of the model parameters. The transition rates determine
the updates (jumps) from any current state σt = σ to a
(random) new state σ′ and concrete examples of spatial
physicochemical models are considered in Section V.D.
From the local transition rates one defines the total rate
λθ(σ) =

∑
σ′ cθ(σ, σ′), which is the intensity of the ex-

ponential waiting time for a jump from the state σ. The

transition probabilities are pθ(σ, σ′) = cθ(σ,σ′)
λθ(σ)

. The ba-

sic simulation tool for these lattice jump processes is ki-
netic Monte Carlo (KMC) with a wide range of applica-
tions from crystal growth, to catalysis, to biology, see for
instance16.

Relative Entropy Rate : In simulations of dynamic transi-
tions between metastable states on high-dimensional en-
ergy landscapes or of NESS we are interested in the sen-
sitivity of stationary processes, i.e., processes for which
the initial probability distribution is the stationary one
(reached after long-time integration). Mathematically,
we want to assess the sensitivity of the CTMC {σt}t≥0

with local transition rates cθ(σ, σ′) to a perturbation
ǫ ∈ R

k in the parameter vector θ giving rise to a pro-
cess {σ̃t}t≥0 with local transition rates cθ+ǫ(σ, σ′), when
the initial data are sampled from the respective station-
ary probability distribution. The error analysis in the
context of the long-time behavior is developed in terms
of the relative entropy,

R
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
=

∫
log

(
dQθ

[0,T ]

dQθ+ǫ
[0,T ]

)
dQθ

[0,T ] , (1)

where Qθ
[0,T ] (resp. Qθ+ǫ

[0,T ]) is the path space probability

measures of {σt}t≥0 (resp. {σ̃t}t≥0) in the time inter-
val [0, T ]. In the case these probability measures have
corresponding probability densities qθ and qθ+ǫ, (1) be-

comes R
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
=
∫
qθ log

(
qθ

qθ+ǫ

)
. A key prop-

erty of the relative entropyR (P |Q) is thatR (P |Q) ≥ 0
with equality if and only if P = Q, which allows us to
view relative entropy as a “distance” (more precisely a
semi-metric) between two probability measures P and
Q. Moreover, from an information theory perspective17,

the relative entropy measures loss/change of information,
e.g. in our context for the process {σt}t≥0 associated
with the parameter vector θ, with respect to the pro-
cess {σ̃t}t≥0 associated with the parameter vector θ + ǫ.
Relative entropy for high-dimensional systems was used
as measure of loss of information in coarse-graining18–20,
and sensitivity analysis for climate modeling problems9.
Starting from (1), by Girsanov’s formula we obtain

an explicit expression for the corresponding Radon-
Nikodym derivative

dQθ
[0,T ]

dQθ+ǫ
[0,T ]

({σt}) = exp
{

∑

s≤T

log
λθ(σs−)p

θ(σs−, σs)

λθ+ǫ(σs−)pθ+ǫ(σs−, σs)

−

∫ T

0

[λθ(σs)− λθ+ǫ(σs)] ds
}

,

(2)

on any path of the process {σt}t∈[0,T ] in terms of the
jump rates and transition probabilities of both process,
under suitable non-degeneracy conditions21. Notice that
σs− denotes the left-hand limit of σs at a jump instance
s. Following calculations regarding the related quan-
tity of entropy production in non-equilibrium statistical
mechanics22, we can show that when the initial distri-
bution σ0 ∼ µθ where µθ (resp. µθ+ǫ) is the station-
ary probability disturbution of {σt}t≥0 (resp. {σ̃t}t≥0),
then the relative entropy formula simplifies dramatically
in two parts, one pure equilibrium (scaling as O(1)) and
one capturing the stationary dynamics (scaling as O(T )):

R
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

= TH
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

+R
(

µθ |µθ+ǫ
)

,

(3)

where R
(
µθ |µθ+ǫ

)
is the relative entropy between the

stationary probabilities, while

H
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

= Eµθ

[

∑

σ′

λθ(σ)pθ(σ, σ′)

× log
λθ(σ)pθ(σ, σ′)

λθ+ǫ(σ)pθ+ǫ(σ, σ′)
− (λθ(σ)− λθ+ǫ(σ))

]

,

(4)

where Eµθ denotes the expected value with respect to

the probability µθ. In (3), we immediately notice that
a most relevant quantity to describe the change of infor-
mation content upon perturbation of model parameters
of a stochastic process is the O(T ) term, which can be
thought as a relative entropy per unit time while on the
other hand, the term R

(
µθ |µθ+ǫ

)
becomes unimportant

as T grows.
We will refer from now on to the quantity (4) as the

Relative Entropy Rate (RER), which can be thought as
the change in information per unit time. Notice that
RER has the correct time scaling since it is actually in-
dependent of the interval [0, T ]. Furthermore, (4) pro-
vides a computable observable that can be sampled from
the steady state µθ in terms of conventional KMC, by-
passing the need for a histogram or an explicit formula
for the high-dimensional probabilities involved in (1). Fi-
nally, the fact that in stationary regimes, when T ≫ 1
in (3), the term R

(
µθ |µθ+ǫ

)
becomes unimportant, is

especially convenient: µθ and µθ+ǫ are typically not
known explicitly in non-reversible systems, for instance
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in spatially distributed reaction KMC or non-reversible
Langevin dynamics considered here as examples.

Fisher Information Matrix on Path Space : An attractive
approach to sensitivity analysis that is rigorously based
on relative entropy calculations is the Fisher Information
Matrix. Indeed, assuming smoothness in the parameter
vector, it is straightforward to obtain the expansion of
(1)17,23,

R
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
=

1

2
ǫTFR(Qθ

[0,T ])ǫ+O(|ǫ|3) , (5)

where the Fisher Information Matrix (FIM) is defined as
the Hessian of the relative entropy:

FR(Qθ
[0,T ]) = ∇2

ǫR
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)∣∣∣
ǫ=0

. (6)

As (5) readily suggests, relative entropy is locally a
quadratic function of the parameter vector θ. Thus spec-
tral analysis of FR–provided the matrix is available–
would allow us to identify which parameter directions are
the most/least sensitive to perturbations, uncertainty or
errors resulting from parameter estimation. The source
of such uncertainties could be related to the assimila-
tion of experimental data24 or finer scale numerical sim-
ulation, e.g. Density Functional Theory computations
in the case of molecular simulations25. More specifi-
cally, the knowledge of the Fisher Information Matrix
not only provides a gradient-free method for sensitivity
analysis, but allows to address questions of parameter
identifiability11,26 and optimal experiment design27,28.
However, the FIM FR in (6) is not accessible compu-
tationally in general, nevertheless analytic calculations
can be performed at equilibrium (e.g., in ergodic sys-
tems when T → ∞) under the assumption or the explicit
knowledge of the stationary distribution µ. An example
of such a calculation is under the assumption of a Gaus-
sian distribution with the mean m(θ) and the covariance
matrix Σ(θ) in which case the matrix FR is computed in
terms of derivatives of the mean and covariance matrix11.
On the other hand (3) provides a different perspective

to these issues, giving rise to a computable observable for
the path space Fisher Information Matrix that includes
transition rates rather than just the stationary PDFs.
Indeed, by combining (3) and (5) we obtain the following
expansion for the dominant, O(T ) term in (3):

H
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
=

1

2
ǫTFH(Qθ

[0,T ])ǫ+O(|ǫ|3) , (7)

where the Fisher Information Matrix per unit time,
FH(Qθ

[0,T ]), has the explicit form

FH(Qθ
[0,T ]) = Eµθ

[∑

σ′

cθ(σ, σ′)

×∇θ log c
θ(σ, σ′)∇θ log c

θ(σ, σ′)T
]
,

(8)

where cθ(σ, σ′) = λθ(σ)pθ(σ, σ′). Fisher Information Ma-
trices given by (6) and (8) are straightforwardly related

through limT→∞
1
T
FR = FH. It is clear from (8) that the

Fisher Information Matrix, just like the Relative Entropy
Rate (4), is merely an observable that can be sampled us-
ing KMC algorithms.
The previous discussion suggests that the proposed ap-

proach to sensitivity analysis is expected to have the fol-
lowing features:

1. It is rigorously valid for the sensitivity of long-time,
stationary dynamics in path space, including for
example metastable dynamics in a complex land-
scape.

2. It is a gradient-free sensitivity analysis method
which does not require the knowledge of the equi-
librium PDFs, as (6) is replaced with a computable
observable (8), that contains explicitly information
for local dynamics.

3. It is suitable for non-equilibrium systems from
a statistical mechanics perspective; for example,
non-reversible processes, such as spatially extended
reaction-diffusion Kinetic Monte Carlo, where the
structure of the equilibrium PDF is unknown and
is typically non-Gaussian.

4. A key enabling tool for implementing the proposed
methodology in high-dimensional stochastic sys-
tems is molecular simulation methods such as KMC
or Langevin solvers which can sample the observ-
ables (4) and (8), and in particular their accelerated
or scalable versions16,29–32.

Indeed, we demonstrate these features by present-
ing three examples addressing different points: (a)
the well-mixed bistable reaction system known as the
Schlögl model which also serves as a benchmark; (b) a
Langevin particle system with either reversible or non-
reversible forcing, that demonstrates the ability of the
proposed method to carry out sensitivity analysis in
non-equilibrium systems; and, (c) a spatially extended
KMC model for CO oxidation known as the Ziff-Gulari-
Barshad (ZGB) model. Such reaction-diffusion models
are typically non-reversible, hence the sensitivity tools we
propose here are highly suitable. Regarding this last class
of problems, we note that in more accurate, state-of-the-
art KMC models with a large number of parameters33–35,
kinetic parameters are estimated through density func-
tional theory (DFT) calculations, hence sensitivity anal-
ysis is a crucial step in determining the parameters that
need to be calculated with greater accuracy.
The paper is organized as follows: in Section II we

present the derivation of the Relative Entropy Rate and
its corresponding Fisher Information Matrix for discrete-
time Markov chains while Section III the same observ-
ables for continuous-time Markov processes (i.e., (3), (4)
and (8)) are derived. Section IV generalizes the RER
and the FIM to time-periodic, inhomogeneous Markov
processes as well as to semi-Markov processes. Statistical
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estimators and numerical examples in Section V demon-
strate the efficiency of the proposed sensitivity method,
while Section VI concludes the paper.

II. DISCRETE TIME MARKOV CHAINS

Let {σm}m∈Z+ be a discrete-time time-homogeneous
Markov chain with separable state space E. The transi-
tion probability kernel of the Markov chain denoted by
P θ(σ, dσ′) depends on the parameter vector θ ∈ R

k. As-
sume that the transition kernel is absolute continuous
with respect to (w.r.t.) the Lebesgue measure36 and the
transition probability density function pθ(σ, σ′) is always
positive for all σ, σ′ ∈ E and for all θ ∈ R

k. We further
assume that {σm}m∈Z+ has a unique stationary probabil-
ity distribution denoted by µθ(σ). Exploiting the Markov
property, the path probability distribution Qθ

0,M for the

path {σm}Mm=0 at the time horizon 0, ...,M starting from
the stationary distribution µθ(σ0) is given by

Qθ
0,M

(
σ0, · · ·, σM

)
= µθ(σ0)p

θ(σ0, σ1) · · · p
θ(σM−1, σM ) .

(9)
We consider the perturbation by ǫ ∈ R

k and the Markov
chain {σ̃m}m∈Z+ with the respective transition probabil-
ity density function, pθ+ǫ(σ, σ′), the respective stationary
density, µθ+ǫ(σ), as well as the respective path distribu-

tion Qθ+ǫ
0,M . Then, the Radon-Nikodym derivative of the

unperturbed path distribution w.r.t. the perturbed path
distribution takes the form

dQθ
0,M

dQθ+ǫ
0,M

(
{σm}

)
=

µθ(σ0)
∏M−1

i=0 pθ(σi, σi+1)

µθ+ǫ(σ0)
∏M−1

i=0 pθ+ǫ(σi, σi+1)
, (10)

which is well-defined since the transition probabilities are
assumed always positive.

The following Proposition demonstrates the relative
entropy representation of the path distribution Qθ

0,M

w.r.t. the path distribution Qθ+ǫ
0,M .

Proposition II.1. Under the previous assumptions,

the path space relative entropy R
(
Qθ

0,M |Qθ+ǫ
0,M

)
:=

∫
log

(
dQθ

0,M

dQ
θ+ǫ
0,M

)
dQθ

0,M equals to

R
(
Qθ

0,M |Qθ+ǫ
0,M

)
= MH

(
Qθ

0,M |Qθ+ǫ
0,M

)
+R

(
µθ |µθ+ǫ

)

(11)
where

H
(
Qθ

0,M |Qθ+ǫ
0,M

)
= Eµθ

[∫

E

pθ(σ, σ′) log
pθ(σ, σ′)

pθ+ǫ(σ, σ′)
d σ′

]

(12)
is the relative entropy rate.

Proof. The path space relative entropy equals to

R
(

Qθ
0,M |Qθ+ǫ

0,M

)

=

∫

E

· · ·

∫

E

µθ(σ0)
M−1
∏

i=0

pθ(σi, σi+1)

× log
µθ(σ0)

∏M−1
i=0 pθ(σi, σi+1)

µθ+ǫ(σ0)
∏M−1

i=0 pθ+ǫ(σi, σi+1)
dσ0 · · · dσM

=

∫

E

· · ·

∫

E

µθ(σ0)

M−1
∏

i=0

pθ(σi, σi+1)

(

log
µθ(σ0)

µθ+ǫ(σ0)

+

M−1
∑

i=0

log
pθ(σi, σi+1)

pθ+ǫ(σi, σi+1)

)

dσ0 · · · dσM

Using the relations

∫

E

p(σ, σ′)dσ′ = 1 &

∫

E

µ(σ)p(σ, σ′)dσ = µ(σ′)

the relative entropy is simplified to

R
(

Qθ
0,M |Qθ+ǫ

0,M

)

=

∫

E

µθ(σ0) log
µθ(σ0)

µθ+ǫ(σ0)
dσ0

+

M−1
∑

i=0

∫

E

∫

E

µθ(σi)p
θ(σi, σi+1) log

pθ(σi, σi+1)

pθ+ǫ(σi, σi+1)
dσidσi+1

= MH
(

Qθ
0,M |Qθ+ǫ

0,M

)

+R
(

µθ |µθ+ǫ
)

For large times (M ≫ 1), the significant term of the

relative entropy, R
(
Qθ

0,M |Qθ+ǫ
0,M

)
, is the relative entropy

rate, H
(
Qθ

0,M |Qθ+ǫ
0,M

)
, which scales linearly with the

number of jumps of the Markov chain while the relative
entropy between the stationary probability distributions,
R
(
µθ |µθ+ǫ

)
, becomes unimportant. Thus, at the sta-

tionary regime, the appropriate observable for sensitivity
analysis is the relative entropy rate. Furthermore, the
RER expression (12) incorporates the transition proba-
bilities of the Markov chain which are typically known
–for instance, whenever a path sample is needed to be
generated– while the respective stationary probability
distributions are typically unknown –for instance, in non-
reversible systems– and should be computed numerically,
if possible. Moreover, the path-space RER takes into
consideration the dynamical aspects of the process while
the relative entropy between the stationary distributions
does not take into account any dynamical aspects of the
process which are critical in metastable or intermittent
regimes.

Fisher Information Matrix for Relative entropy rate :
The relative entropy rate is locally a quadratic functional
in a neighborhood of θ. The curvature of the RER around
θ, defined by its Hessian, is called the Fisher Informa-
tion Matrix which is formally derived as follows. Let
δp(σ, σ′) := pθ+ǫ(σ, σ′) − pθ(σ, σ′), then the relative en-
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tropy rate of Qθ
0,M w.r.t. Qθ+ǫ

0,M is written as

H
(

Qθ
0,M |Qθ+ǫ

0,M

)

= −

∫

E

∫

E

µθ(σ)pθ(σ, σ′) log

(

1 +
δp(σ, σ′)

pθ(σ, σ′)

)

dσdσ′

= −

∫

E

∫

E

[

µθ(σ)δp(σ, σ′)

−
1

2
µθ(σ)

δp(σ, σ′)2

pθ(σ, σ′)
+O(|δp(σ, σ′)|3)

]

dσdσ′ .

Moreover, for all σ ∈ E, it holds that
∫

E

δp(σ, σ′)dσ′ =

∫

E

pθ+ǫ(σ, σ′)dσ′−

∫

E

pθ(σ, σ′)dσ′ = 1−1 = 0

while a under smoothness assumption on the transition
probability function for the parameter θ, which is an eas-
ily checkable assumption, a Taylor series expansion is ap-
plicable to δp:

δp(σ, σ′) = ǫT∇θp
θ(σ, σ′) +O(|ǫ|2)

Thus, we finally obtain that

H
(

Qθ
0,M |Qθ+ǫ

0,M

)

=
1

2

∫

E

∫

E

µθ(σ)
(ǫT∇θp

θ(σ, σ′))2

pθ(σ, σ′)
dσdσ′ +O(|ǫ|3)

=
1

2
ǫT

(

∫

E

∫

E

µθ(σ)pθ(σ, σ)∇θ log p
θ(σ, σ′)

×∇θ log p
θ(σ, σ′)T dσdσ′

)

ǫ+O(|ǫ|3)

=
1

2
ǫTFH

(

Qθ
0,M

)

ǫ+O(|ǫ|3)

where

FH

(

Qθ
0,M

)

:=

Eµθ

[
∫

E

pθ(σ, σ)∇θ log p
θ(σ, σ′)∇θ log p

θ(σ, σ′)Td σ′

]

(13)

is the path space Fisher Information Matrix (FIM) for
the relative entropy rate. Notice that FIM as well as
RER are computed from the transition probabilities un-
der mild ergodic average assumptions (see also Section V
where explicit numerical formulas are provided).

Remark II.1. The Fisher information Matrix for

H
(
Qθ+ǫ

0,M |Qθ
0,M

)
is again FH

(
Qθ

0,M

)
while the relative

entropy rates are related for small ǫ through

H
(

Qθ+ǫ
0,M |Qθ

0,M

)

= H
(

Qθ
0,M |Qθ+ǫ

0,M

)

+O(|ǫ|3)

= H
(

Qθ
0,M |Qθ−ǫ

0,M

)

+O(|ǫ|3) .
(14)

Remark II.2. If the transition probability function of
the Markov chain equals to pθ(σ, σ′) = µθ(σ′) for all
σ, σ′ ∈ E and for all θ ∈ R

k, which is equivalent to
the fact that the samples are independent, identically dis-
tributed from the stationary probability distribution, then
the relative entropy rate between the path probabilities be-
comes the usual relative entropy between the stationary

distributions and the path space FIM becomes the usual
FIM. Indeed, FIM is simplified to

FH

(

Qθ
0,M

)

=

∫

E

∫

E

µθ(σ)µθ(σ′)∇θ log µ
θ(σ′)∇θ log µ

θ(σ′)Tdσdσ′

=

∫

E

µθ(σ′)∇θ log µ
θ(σ′)∇θ log µ

θ(σ′)T dσ′

=: FR

(

µθ
)

while we similarly obtain for the relative entropy rate that
H(P θ

0t|P
θ+ǫ
0t ) = R(µθ|µθ+ǫ).

III. CONTINUOUS-TIME MARKOV

CHAINS

As in the case of Kinetic Monte Carlo methods, we con-
sider {σt}t∈R+ to be a CTMC with countable state space
E. The parameter dependent transition rates denoted
by cθ(σ, σ′) completely define the jump Markov process.
The transition rates determine the updates (jumps or so-
journ times) from a current state σ to a new (random)
state σ′ through the total rate λθ(σ) :=

∑
σ′∈E cθ(σ, σ′)

which is the intensity of the exponential waiting time for
a jump from state σ. The transition probabilities for the

embedded Markov chain
{
Jn
}
n≥0

are pθ(σ, σ′) = cθ(σ,σ′)
λθ(σ)

while the generator of the jump Markov process is an
operator acting on the bounded functions (also called
observables) f(σ) defined on the state space E and fully
determines the process:

Lf(σ) =
∑

σ′∈E

cθ(σ, σ′)[f(σ′)− f(σ)] . (15)

Assume that a new jump Markov process {σ̃t}t∈R+ is
defined by perturbing the transition rates by a small vec-
tor ǫ ∈ R

k and that the two path probabilities Qθ
[0,T ]

and Qθ+ǫ
[0,T ] are absolute continuous with respect to each

other which is satisfied when cθ(σ, σ′) = 0 if and only if
cθ+ǫ(σ, σ′) = 0 holds for all σ, σ′ ∈ E. Then the Radon-
Nikodym derivative of the path distribution Qθ

[0,T ] with

respect to the path distribution Qθ+ǫ
[0,T ] has a explicit for-

mula known also as Girsanov formula21,37

dQθ
[0,T ]

dQθ+ǫ
[0,T ]

({σt}) =
µθ(σ0)

µθ+ǫ(σ0)
exp

{
∫ T

0

log
cθ(σs−, σs)

cθ+ǫ(σs−, σs)
dNs

−

∫ T

0

[λθ(σs)− λθ+ǫ(σs)] ds

}

,

(16)

where µθ (reps. µθ+ǫ) is the stationary distributions of
{σt}t∈R+ (resp. {σ̃t}t∈R+) while Ns is the counting (of
the jumps) measure. Having the Girsanov formula, the
relative entropy is easily derived as the next Proposition
reveals.

5



Proposition III.1. Under the previous assumptions,

the path space relative entropy R
(
Qθ+ǫ

[0,T ] |Q
θ
[0,T ]

)
equals

to

R
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
= TH

(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
+R

(
µθ |µθ+ǫ

)
,

(17)
where

H
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

= Eµθ

[

∑

σ′∈E

cθ(σ, σ′) log
cθ(σ, σ′)

cθ+ǫ(σ, σ′)

− (λθ(σ)− λθ+ǫ(σ))
]

(18)

is the relative entropy rate.

Proof. The explicit formula for the RER was first given
by Dumitrescu38 for finite state space, though, we repro-
duce the proof for the sake of completeness. Using the
Girsanov formula, the relative entropy (17) is rewritten
as

R
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

= EQθ
[0,T ]

[

log
µθ(σ0)

µθ+ǫ(σ0)

∫ T

0

log
cθ(σs−, σs)

cθ+ǫ(σs−, σs)
dNs

−

∫ T

0

[λθ(σs)− λθ+ǫ(σs)] ds

]

= EQθ
[0,T ]

[∫ T

0

log
cθ(σs−, σs)

cθ+ǫ(σs−, σs)
dNs

]

− EQθ
[0,T ]

[
∫ T

0

[λθ(σs)− λθ+ǫ(σs)] ds

]

+ EQθ
[0,T ]

[

log
µθ(σ0)

µθ+ǫ(σ0)

]

Exploiting the fact that the process Mt := Nt −∫ t

0
λθ(σs−)d s is a martingale, we have that

EQθ
[0,T ]

[∫ T

0

log
cθ(σs−, σs)

cθ+ǫ(σs−, σs)
dNs

]

= EQθ
[0,T ]

[∫ T

0

λθ(σs−) log
cθ(σs−, σs)

cθ+ǫ(σs−, σs)
ds

]

.

Moreover, changing the order of the integrals and due
to the stationarity of the process {σt}t∈R+ , the relative
entropy is simplified to the following:

R
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

=

∫ T

0

Eµθ

[

∑

σ′∈E

λθ(σ)pθ(σ, σ′) log
cθ(σ, σ′)

cθ+ǫ(σ, σ′)

]

ds

−

∫ T

0

Eµθ

[

λθ(σ)− λθ+ǫ(σ)
]

ds+ Eµθ

[

log
µθ(σ)

µθ+ǫ(σ)

]

= TH
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

+R
(

µθ |µθ+ǫ
)

Fisher Information Matrix : Even though not directly
evident, relative entropy rate for the jump Markov pro-
cesses is locally a quadratic function of the parame-
ter vector θ ∈ R

k. Hence, Fisher Information Matrix
which is defined as the Hessian of the RER can be de-
rived. Indeed, defining the rate difference δc(σ, σ′) =

cθ+ǫ(σ, σ′)− cθ(σ, σ′), the relative entropy rate of Qθ
[0,T ]

w.r.t. Qθ+ǫ
[0,T ] equals to

H
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

= −
∑

σ,σ′∈E

µθ(σ)cθ(σ, σ′) log

(

1 +
δc(σ, σ′)

cθ(σ, σ′)

)

+
∑

σ,σ′∈E

µθ(σ)δc(σ, σ′)

= −
∑

σ,σ′∈E

[

µθ(σ)δc(σ, σ′)−
1

2
µθ(σ)

δc(σ, σ′)2

cθ(σ, σ′)

+O(|δc(σ, σ′)|3)
]

+
∑

σ,σ′∈E

µθ(σ)δc(σ, σ′)

=
1

2

∑

σ,σ′∈E

µθ(σ)
δc(σ, σ′)2

cθ(σ, σ′)
+O(|δc(σ, σ′)|3)

(19)

Under a smoothness assumption on the transition rates
in a neighborhood of parameter vector θ, which is also
a checkable hypothesis, a Taylor series expansion of
δc(σ, σ′) = ǫT∇θc

θ(σ, σ′) +O(|ǫ|2) results in

H
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

=
1

2

∑

σ,σ′∈E

µθ(σ)

(

ǫT∇θc
θ(σ, σ′)

)2

cθ(σ, σ′)
+O(|ǫ|3)

=
1

2
ǫT

(

∑

σ,σ′∈E

µθ(σ)cθ(σ, σ′)∇θ log c
θ(σ, σ′)

×∇θ log c
θ(σ, σ′)T

)

ǫ+O(|ǫ|3)

=
1

2
ǫTFH(Qθ

[0,T ])ǫ+O(|ǫ|3)

(20)

where

FH(Qθ
[0,T ]) :=

Eµθ

[

∑

σ′∈E

cθ(σ, σ′)∇θ log c
θ(σ, σ′)∇θ log c

θ(σ, σ′)T
]

(21)

is the path space Fisher information matrix of a jump
Markov process. It is based on the transition rates of the
process which are typically known —they actually define
the process— thus FIM as well as RER are numerically
computable under mild ergodicity assumptions. Further-
more, it is noteworthy that the only difference between
the FIM of the Markov chains in the previous Section
and the FIM of the continuous-time jump Markov pro-
cesses is that in the latter the transition rates cθ(σ, σ′) are
employed instead of the transition probabilities pθ(σ, σ′).

IV. FURTHER GENERALIZATIONS

The two previous Sections cover the cases of time-
homogeneous Markov chains and pure jump Markov pro-
cesses. The key observable for the parameter sensitivity
evaluation is the Relative Entropy Rate which is the time
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average of the path space relative entropy as time goes
to infinity:

H
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
= lim

T→∞

1

T
R
(
Qθ

[0,T ] |Q
θ+ǫ
[0,T ]

)
. (22)

Additionally, RER has an explicit formula in both cases
making it computationally tractable as we practically
demonstrate in Section V. Thus, if there are more general
stochastic processes which also have an explicit formula
for the RER, Fisher Information Matrix can be defined
analogously and gradient-free sensitivity analysis is also
doable. Next, we present two families of stochastic pro-
cesses which have known RER.

Time-periodic Markov Processes : Such Markov processes
are typically utilized to describe circular physical or bi-
ological phenomena such as annual climate models or
daily behavior of mammals. Even though more general
classes of processes can be presented, we restrict to the
discrete-time Markov chains with finite state space E.
The time-inhomogeneous transition probability matrix is
denoted by p(σ, σ′;m) and the periodicity implies that
p(σ, σ′;m) = p(σ, σ′; kζ + m), ∀k ∈ Z

+ where ζ is the
period. Assume that for all m = 0, ..., ζ − 1 the process
{σkζ+m}∞k=0 which is a Markov chain has a unique sta-
tionary distribution µ(x,m). Then the Markov process{
σm

}
m∈Z+ at steady state regime is periodically station-

ary with periodic stationary distribution µ.
In terms of sensitivity analysis, the relative entropy

rate between the path probabilities has the explicit for-
mula

H
(

Qθ
0,M |Qθ+ǫ

0,M

)

=
1

ζ

ζ−1
∑

m=0

∑

σ,σ′∈E

µθ(σ, ζ)

× pθ(σ, σ′;m) log
pθ(σ, σ′;m)

pθ+ǫ(σ, σ′;m)

=
1

ζ
Eµθ

[

ζ−1
∑

m=0

∑

σ′∈E

pθ(σ, σ′;m) log
pθ(σ, σ′;m)

pθ+ǫ(σ, σ′;m)

]

.

(23)

Similar to the previous cases, a generalized formula for
the path-space FIM can be derived. It is given by

FH(Qθ
0,M ) :=

1

ζ

ζ−1
∑

m=0

∑

σ,σ′∈E

µθ(σ, ζ)pθ(σ, σ′;m)

×∇θ log p
θ(σ, σ′;m)∇θ log p

θ(σ, σ′;m)T .

(24)

Existence of the relative entropy rate for general time-
inhomogeneous Markov chains can also be found39.

Semi-Markov Processes : These processes generalize the
jump Markov processes as well as the renewal processes
to the case where the future evolution (i.e., waiting times
and transition probabilities) depends on the present state
and on the time elapsed since the last transition. Semi-
Markov processes have been extensively used to describe
reliability models40, modeling earthquakes41, queuing
theory42, etc. In order to define a semi-Markov process
the definition of a semi-Markov transition kernel as well
as its corresponding renewal process is required. Let E

be a countable state space then the process {Jn, Sn}n∈Z+

is a renewal Markov process with semi-Markov transition
kernel q(σ, σ′; t) σ, σ′ ∈ E, t ∈ R

+ if

P{Jn+1 = σ′, Sn+1 − Sn < t|Jn = σ, ..., J0, Sn, ..., S0)}

= P{(Jn+1 = σ′, Sn+1 − Sn < t|Jn = σ} := q(σ, σ′; t) .
(25)

The process Jn is a Markov chain with transition proba-
bility matrix elements p(σ, σ′) = limt→∞ q(σ, σ′, t) while
the process Sn is the sequence of jump times. Let
Nt, t ∈ R

+ defined by Nt = sup{n ≥ 0 : Sn < t be the
counting process of the jumps in the interval (0, t]. Then
the stochastic process Zt, t ∈ R

+ defined by Zt = JNt

for t ≥ 0 (or Jn = Z(Sn) for n ≥ 0) is the semi-Markov
process associated with (Jn, Sn).
Assume further that the (embedded) Markov chain Jn

has a stationary distribution denoted by µ as well that
the mean sojourn time with respect to the stationary dis-
tribution defined by m̂ :=

∑
σ,σ′∈E µ(σ)

∫∞

0
q(σ, σ′; t) is

finite. Then it was shown in43 that the relative entropy
rate of the semi-Markov process Zt with model param-
eter vector θ w.r.t. the semi-Markov process Z̃t with
parameter vector θ + ǫ is given by

H
(

Qθ
[0,T ] |Q

θ+ǫ
[0,T ]

)

=

1

m̂

∫ ∞

0

∑

σ,σ′∈E

µθ(σ)qθ(σ, σ′; s) log
qθ(σ, σ′; s)

qθ+ǫ(σ, σ′; s)
ds ,

(26)

while the Fisher information matrix is similarly defined
as

FHQθ
[0,T ] :=

1

m̂

∫ ∞

0

∑

σ,σ′∈E

µθ(σ)qθ(σ, σ′; s)

×∇θ log q
θ(σ, σ′; s)∇θ log q

θ(σ, σ′; s)T ds .

(27)

V. NUMERICAL EXAMPLES

We demonstrate the wide applicability of the proposed
methods by studying the parameter sensitivity analysis
of three models with very different features and range of
applicability. Namely, we discuss the Schlögl model, re-
versible and irreversible Langevin processes and the spa-
tially extended ZGB model. Each of these models reveals
different aspects of the proposed method. However, we
will first need to discuss the necessary statistical estima-
tors for the Relative Entropy Rate and the Fisher Infor-
mation Matrix.

A. Statistical Estimators for RER and FIM

The Relative Entropy Rate (12), (18) as well as the
Fisher Information Matrix (13), (21) are observables of
the stochastic process and can be estimated as ergodic
averages. Thus, both observables are computationally
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tractable since they also depend only on the local tran-
sition quantities. We discuss each case separately next.

Discrete-time Markov Chains : A statistical estimator for
Markov Chains is directly obtained from (12). For in-
stance, in the continuous state space case, the n-sample
numerical RER is given by

H̄(n)
1 =

1

n

n−1
∑

i=0

∫

E

pθ(σi, σ
′) log

pθ(σi, σ
′)

pθ+ǫ(σi, σ′)
dσ′ (28)

while the n-sample statistical estimator for FIM is

F̄
(n)
1 =

1

n

n−1
∑

i=0

∫

E

pθ(σi, σ
′)∇θ log p

θ(σi, σ
′)∇θ log p

θ(σi, σ
′)Tdσ′,

(29)
where {σi}

n
i=0 is a realization of the Markov chain with

parameter vector θ at steady (stationary) state. Thus the
RER for various different perturbation directions (i.e.,
different ǫ’s) is computed from a single run since only the
unperturbed process is needed to be simulated. However,
the integrals in (28) and (29) are rarely explicitly com-
putable thus a second statistical estimator for both RER
and FIM is obtained from the Radon-Nikodym derivative
(10) in the path space. It is given by

H̄(n)
2 =

1

n

n−1
∑

i=0

log
pθ(σi, σi+1)

pθ+ǫ(σi, σi+1)
(30)

while the second estimator for FIM is

F̄
(n)
2 =

1

n

n−1
∑

i=0

∇θ log p
θ(σi, σi+1)∇θ log p

θ(σi, σi+1)
T . (31)

Even though, the second approach is tractable for any
transition probability function, it suffers from larger vari-
ance (see also Fig. 1), since the summation over all the
possible states in (28) results in estimators with less vari-
ance compared to the variance of estimator (30). Hence,
the first numerical estimator is preferred whenever ap-
plicable (for instance, when the state space is finite and
relatively small). Finally, the estimators are valid also
for time inhomogeneous Markov chain where pθ(σi, σi+1)
is replaced by pθ(σi, σi+1; i).

Continuous-time Markov Chains : The estimators for
CTMC are constructed along the same lines. Indeed,
the first estimator for RER is based on (18) and it is
given by

H̄
(n)
1 =

1

T

n−1
∑

i=0

∆τi
[

∑

σ′∈E

cθ(σi, σ
′)

× log
cθ(σi, σ

′)

cθ+ǫ(σi, σ′)
−

(

λθ(σi)− λθ+ǫ(σi)
)

]

(32)

where ∆τi is an exponential random variable with pa-
rameter λ(σi) while T =

∑
i∆τi is the total simulation

time. The sequence {σi}
n
i=0 is the embedded Markov

chain with transition probabilities pθ(σi, σ
′) = cθ(σi,σ

′)
λ(σi)

at step i. Notice that the weight ∆τi at each step which
is the waiting time at state σi is necessary for the correct

estimation of the observable44. Similarly, the estimator
for the FIM is

F̄
(n)
1 =

1

T

n−1
∑

i=0

∆τi
∑

σ′∈E

cθ(σi, σ
′)∇θ log c

θ(σi, σ
′)∇θ log c

θ(σi, σ
′)T .

(33)
Notice that the computation of the local transition rates
cθ(σi, σ

′) for all σ′ ∈ E is needed for the simulation of
the jump Markov process when Monte Carlo methods
such as stochastic simulation algorithm (SSA)44 is uti-
lized. Thus, the computation of the perturbed transi-
tion rates is the only additional computational cost of
this numerical approximation. On the other hand, the
second numerical estimator for RER is based on the Gir-
sanov representation of the Radon-Nikodym derivative
(i.e., (16)) and it is given by

H̄
(n)
2 =

1

n

n−1
∑

i=0

log
cθ(σi, σi+1)

cθ+ǫ(σi, σi+1)
−

1

T

n−1
∑

i=0

∆τi
(

λθ(σi)−λθ+ǫ(σi)
)

(34)

Similarly we can construct an FIM estimator. Notice
that the term in (34) involving logarithms should not
be weighted since the counting measure is approximated
with this estimator. Unfortunately, the estimator (34)
has the same computational cost as (32) due to the need
for the computation of the total rate which is the sum
of the local transition rates. Furthermore, in terms of
variance, the latter estimator has worse performance due
to the discarded sum over the states σ′.
Finally, we complete this section with a proposition

that states that all the proposed estimators are unbiased.

Proposition V.1. Under the assumptions of Proposi-
tion II.1 for Markov chains or of Proposition III.1 for
jump Markov processes, the numerical estimators (28)–
(34) are unbiased.

Proof. The proofs for each estimator are similar and they
are more or less hidden in the proofs of Propositions II.1
and III.1. Nevertheless, we provide the proof for the
estimator (30) for the sake of completeness. We have
that

EQ

[
H̄

(n)
2

]
=

∫
· · ·

∫
1

n

n−1∑

i=0

log
pθ(σi, σi+1)

pθ+ǫ(σi, σi+1)

× µθ(σ0)p
θ(σ0, σ1) · · · p

θ(σn−1, σn)dσ0 · · · dσn

=
1

n

n−1∑

i=0

∫ ∫
log

pθ(σi, σi+1)

pθ+ǫ(σi, σi+1)
µθ(σi)p

θ(σi, σi+1)dσidσi+1

= H
(
Qθ |Qθ+ǫ

)

which completes the proof.

B. Schlögl Model

The Schlögl model describes a well-mixed chemical re-
action network between three species A, B, X45,46. The
concentrations A, B are kept constant while the reaction
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rates k1, ..., k4 are the parameters of the model. Table I
provides the propensity functions (rates) for these reac-
tions where Ω is the volume of the system Note that Ω
serves as a normalization for the reaction rates making
them of the same order. Thus, there is no need to re-
sort in logarithmic sensitivity analysis even though this
is possible (see Appendix A).

TABLE I. The rate of the kth event when the number of X
molecules is x is denoted by ck(x). Ω is the volume of the
system.

Event Reaction Rate

1 A+ 2X → 3X c1(x) = k1Ax(x− 1)/(2Ω)

2 3X → A+ 2X c2(x) = k2x(x− 1)(x− 2)/(6Ω2)

3 B → X c3(x) = k3BΩ

4 X → B c4(x) = k4x

The stochastic process describing the number of X
molecules of the Schlögl model is a CTMC with rates pro-
vided in Table I. Since the Schlögl model is a birth/death
process, the exact stationary distribution µ(x), can be it-
eratively computed from the reaction rates utilizing the
detailed balance condition47. It states that

µ(x)c(x, x + 1) = µ(x+ 1)c(x+ 1, x) (35)

where c(x, x+1) = c1(x)+c3(x) is the birth rate at state
x while c(x, x − 1) = c2(x) + c4(x) is the death rate of
the same state. Having the exact stationary distribution
a simple benchmark for the sensitivity of the system is
provided. Furthermore for the parameter values in Ta-
ble II, the stationary distribution of the Schlögl model
possesses two most probable constant steady states (see
also Fig. 3, solid lines). Thus, the stochastic process
is non-Gaussian and Gaussian approximations11 are in-
valid, at least at long times where transitions between
the most likely states take place, see (see Figs. 1 and 3).
Capturing these transitions is a crucial element for the
correct calculation of stationary dynamics and the effi-
cient sampling of the stationary distribution. Notice also
that there are studies on sensitivity analysis1,48 where
the Schlögl model with volume Ω = 100 has been used
for benchmarking, however, for this value of Ω the most
likely states in Fig. 3 are steep and the simulation algo-
rithm is trapped, depending on the initial data, into the
one of the two corresponding wells. Thus, for deep wells
it takes an exponentially long time to make a transition
from one to the other well, consequently, the sensitivity
analysis is biased and depends on the initial value of the
process. In fact, in the case of deep wells the Gaussian ap-
proximation is correct and the FIM analysis11 applies as
long as the process remains trapped. In a intuitive sense,
the volume Ω can be thought as the inverse temperature
of the system making the stationary distribution more or
less steep13.
Let denote θ = [k1A, k2, k3B, k4]

T , then the numeri-
cal estimator for RER as well as for FIM for the Schlögl

TABLE II. Parameter values for the Schlögl model.

Parameters Ω k1A k2 k3B k4

Values 15 3 1 2 3.5
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FIG. 1. Upper plot: The number of X molecules as a func-
tion of time. The stochastic process sequentially visits the
two most probable states defined as the maxima of the PDF.
Lower panel: RER as a function of time when k1A is per-
turbed by 0.05 computed using (32) (dashed line) and using
(34) (grey line). In both cases, the accuracy of the numerical
estimators increase as the number of samples increases.

model is given by (32) and (33), respectively. The upper
panel of Fig. 1 shows the number of X molecules in the
course of time. The number of jumps of this process are
106 while the initial value X0 = 100 is slightly above the
minimum of the second well. The lower panel of Fig. 1
shows the numerical RER (dashed line) as a function of
time when only k1A is perturbed by 0.05 (i.e., perturba-
tion is ǫ = 0.05e1) as well as the exact RER computed
from (18). For comparison purposes, we also plot the
RER estimator (34). Obviously, as simulation time is in-
creased both numerical RER estimators converge to the
exact value even though the estimator (34) needs more
samples to converge (i.e., its variance is larger). Notice
that enough transitions between the two steady states are
necessary in order to obtain robust results. Fig. 2 depicts
the exact RER (circles), the numerically-computed RER
(stars) as well the FIM-based RER (squares). The direc-
tions ±ǫ0ek, k = 1, ..., 4 where ǫ0 is set to 0.05 while ek
are the typical orthonormal unit vectors are considered.
These directions correspond to the perturbation of just
one of the model’s parameters. The number of jumps of
this simulation is 5 · 106 while the initial value is again
X0 = 100. The numerically-computed RERs have sim-
ilar values with the exact ones as Fig. 2 demonstrates.
The computed RERs imply that the most sensitive pa-
rameter is k2 (corresponds to ±e2) while the least sen-
sitive parameter is k3B (corresponds to ±e3). Another
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important feature of the proposed sensitivity method is
that the RERs for all the different parameter perturba-
tions are computed from a single simulation run of the
unperturbed process. Thus, for each direction, the only
additional computational cost is the calculation of the
perturbed rates of the process. Notice also that RER
gives different values between a direction and its opposite
resulting in assigning different sensitivities while FIM-
based RER cannot distinguish between the two opposite
directions since it is a second-order (quadratic) approxi-
mation.
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FIG. 2. Exact (circles), numerical (stars) and FIM-based
(squares) RER for various directions. k2 is the most sensitive
parameter followed by k1A while the least sensitive parame-
ters are k4 and k3B.

We further validate the inference capabilities of RER
by illustrating the actual stationary distribution of the
perturbed processes. It is expected that the most/least
sensitive parameters of the path distribution should be
strongly related with the most/least sensitive parameters
of the stationary distribution. Indeed, the upper panel
of Fig. 3 presents the stationary distributions of the un-
perturbed process (solid line) as well the perturbed sta-
tionary distribution of the most (dashed line) and least
(dotted line) sensitive parameters. The perturbation of
the most sensitive parameter results in the largest change
of the stationary distribution while the smallest change
is observed when the least sensitive parameter is per-
turbed. Moreover, FIM can be used for the computation
not only of the most sensitive parameter but also for
the computation of the most sensitive direction in gen-
eral. Indeed, the most sensitive direction can be found
by performing eigenvalue analysis to the FIM. The eigen-
vector with the highest eigenvalue defines the most sen-
sitive direction. In our setup, the most sensitive direc-
tion is ǫmax = [0, 0.978, 0, 0.207]. The prominent param-
eter of the most sensitive direction is k2 which is not a
surprise since, from Fig. 2, k2 is the most sensitive pa-
rameter. The lower panel of Fig. 3 depicts the station-
ary distribution of the most sensitive parameter (i.e., k2
or −ǫ0e2) (dashed line) and the most sensitive direction
(i.e., ǫ0ǫmax) (dotted line). It is evident that the station-
ary distribution of the most sensitive direction is further
away from the unperturbed stationary distribution com-
pared to the stationary distribution of the most sensitive

parameter.
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FIG. 3. Upper plot: The stationary distributions for the un-
perturbed process (solid line), the most sensitive parameter
k2 (dashed line) and the least sensitive paramter k3B (dotted
line). Lower plot: The stationary distributions for the unper-
turbed process (solid line), the most sensitive parameter k2
(dashed line) and the most sensitive direction ǫmax (dotted
line).

C. Reversible and non-reversible Langevin

Processes

The second example we consider is a particle model
with interactions which have been applied and studied
primarily in molecular dynamics49–52 but also in biol-
ogy (for instance, in swarming53), etc. In molecular dy-
namics, the Langevin dynamics is typically a Hamilto-
nian system coupled with a thermostat (i.e., noise). A
Langevin process is defined by the SDE system

dqt =
1

m
ptdt

dpt = −F(qt)dt−
γ

m
ptdt+ σdBt

(36)

where qt ∈ R
dN is the position vector of the N particles

in d dimensions, pt ∈ R
dN is the momentum vector of

the particles, m is the mass of the particles, F is a driv-
ing force, γ is the friction factor, σ is the diffusion fac-
tor and Bt is a dN -dimensional Brownian motion. The
first equation which describes the evolution of the po-
sition of the particles is deterministic thus the overall
SDE system is degenerate. In the zero-mass limit or the
infinite-friction limit, Langevin process is simplified to
overdamped Langevin process which is non-degenerate,
however, several studies advocate the use of Langevin
dynamics directly54,55. The proposed sensitivity analysis
approach is widely applicable to SDE systems once the
assumption on ergodicity is satisfied.
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The vector field F(·) denotes the force exerted on the
system and here we assume it consists of two terms: a
gradient (potential) component as in typical Langevin
systems, as well as an additional non-gradient term,
where the latter is assumed to be divergence-free:

F(q) = ∇qV (q) + αG(q) , (37)

and ∇q · G = 0. Here we consider particular examples
to illustrate the applicability of the proposed sensitiv-
ity analysis methods. The gradient term in (37) models
particle interactions given by

V (q) =
∑

i,j<i

VM (|qi − qj |) (38)

where VM (r) is the three-parameter Morse potential
VM (r) = De(1 − e−a(r−re))2. The Morse potential in-
cludes a combination of short-range repulsive and long-
range attractive interactions and has been extensively
used in molecular simulations56. The divergence-free
component is taken to be a simple antisymmetric force
given by

Gi(q) = qi+1 − qi−1 , i = 1, ..., N (39)

where q0 = qN and qN+1 = q1.

We now return to (37) and discuss the implications
of its structure. When α = 0, the Langevin process is
reversible meaning that the condition of detailed bal-
ance is satisfied with respect to a known Gibbs sta-
tionary probability distribution52. However, knowing
the stationary distribution explicitly is insufficient to
carry out sensitivity analysis on the stationary dynamics
which typically may include dynamic transitions between
metastable states, as in the Schlögl Model discussed ear-
lier. Furthermore, when α 6= 0, detailed balance does
not hold true in general and the stationary probability
distribution of the corresponding Langevin process is not
known since the system is non-reversible22,57. Examples
of forces such as (37) that include non-gradient terms and
yield non-reversible Langevin equations, arise typically
in driven systems, for instance in Brownian particle sus-
pensions where particles interact with a fluid flow58. For
non-reversible systems no efficient method for sensitiv-
ity analysis has been reported in the literature, at least
for the cases dealt here, namely (a) long-time, station-
ary dynamics (also referred to as non-equilibrium steady
states (NESS)22,57), as well as, (b) the unknown station-
ary probability. Our proposed path-space RER sensitiv-
ity methods can address these challenges and is straight-
forwardly applicable to both reversible and non-reversible
Langevin equations as we show next.

First, an explicit EM–Verlet (symplectic)–implicit EM
scheme is applied for the discretization of (36). It is writ-

ten as

pi+ 1
2
= pi − F(qi)

∆t

2
−

γ

m
pi

∆t

2
+ σ∆Wi

qi+1 = qi +m−1pi+ 1
2
∆t

pi+1 = pi+ 1
2
− F(qi+1)

∆t

2
−

γ

m
pi+1

∆t

2
+ σ∆Wi+1

2

(40)

with ∆Wi,∆Wi+ 1
2
∼ N (0, ∆t

2 IdN ) where N is the multi-

variate normal distribution. This numerical scheme also
known as BBK integrator52,59 utilizes a Strang splitting.
Thus, the discretized Langevin process is a Markov chain
with continuous state space. Notice that the numerical
scheme is non-degenerate, thus, the transition probabil-
ity from state (q, p) to state (p′, q′) is given by

P (q, p, q′, p′) = P (q′|q, p)P (p′|q′, q, p) (41)

where

P (q′|q, p) =
1

Z0
e−

m2

σ2∆t3
|q′−q+(p−F(q) ∆t

2m+p
∆tγ
2m )∆t|2 (42)

and

P (p′|q′, q, p) =
1

Z1
e−

1
σ2∆t

|(1+ γ∆t
2m )p′−( m

∆t
(q′−q)−∆t

2 F(q′))|
2

(43)
where Zi, i = 0, 1 are the respective normalization
constants. Let now define the parameter vector θ =
[De, a, re]. Then, the discretized Langevin model (40)
is a discrete-time Markov process with R

2dN being the
state space. The statistical estimators for RER as well
as for FIM are given by (30) and (31), respectively. No-
tice that the estimators with larger variance were chosen
because the integration of the transition probability den-
sity function w.r.t. the positions is not a trivial problem,
if not intractable in high dimensions.

TABLE III. Parameter values for the discretized Langevin
system.

Parameters N De a re m γ σ ∆t

Values 3 0.3 0.3 1 1 1 0.1 0.01

The upper panel of Fig. 4 depicts the numerical RER
as a function of simulation time for the parameter val-
ues given in Table III. The reversible case is considered
while the sensitivity of the parameters is obtained from
the directions defined by the orthonormal unit vectors
multiplied with ǫ0 = 0.05. Since the initial positions and
momenta where randomly chosen from a uniform distri-
bution an initial out-of-equilibrium time regime can be
seen in the Figure (up to time t0 = 100). Moreover, the
variance of RER as an observable is rather large which
can be explained by the small number of particles. Sys-
tems with more particles are expected to converge faster
due to averaging effects. The lower panel of Fig. 4 depicts
the RER at final time t = 104 with an initial equilibra-
tion time t0 = 100 where the numerical RER is discarded.
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Evidently, the most sensitive parameter is a followed by
De while the least sensitive parameter is re.
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FIG. 4. Upper plot: Relative entropy rate as a function of
time for perturbations of De (solid line), a (dashed line) and
of re (grey line) at the reversible regime (α = 0). The variance
of the numerical RER is large, necessitating more samples for
accurate estimation. Lower plot: RER for various directions.
The most sensitive parameter is a.

Utilizing our methodology the parameter sensitivity
of not only the reversible regime but also of the non-
reversible, α 6= 0, regime can be explored even though
the stationary probability is not known. Fig. 5 shows the
level sets of the FIM matrix for the reversible case (upper
plots, α = 0) and for the irreversible case (lower plots,
α = 0.1). Figure suggests that the additional irreversible
component results in the fact that some directions be-
came more sensitive and some other directions became
less sensitive. Further validation is obtained from the
eigenvalues of the FIM which are 7.30, 0.592, 0.015 for the
reversible case while the eigenvalues for the irreversible
case are 13.90, 0.302, 0.074. Finally, FIM can be very
useful in various ways for the quantification of sensitiv-
ity analysis. For instance, the determinant of FIM which
in optimal experiment design is called A-optimality can
be used as a measure of parameter identification11,26,27.
In our particular example, the determinants are 0.065
and 0.313 for the reversible and irreversible cases, respec-
tively. This result asserts that in the non-reversible case
α 6= 0 in (37), the divergence-free component improves
the ability of any estimator of the potential’s parameters.

D. Spatially extended Kinetic Monte Carlo

models

The applicability of the proposed sensitivity method
is further demonstrated in spatially extended systems
which exhibit complex spatio-temporal morphologies
such as islands, spirals, rings, etc. at mesoscale length
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FIG. 5. Upper plots: Level sets (or neutral spaces) for the
reversible case (α = 0). Lower plots: Level sets for the irre-
versible case (α = 0.1).

TABLE IV. The rate of the kth event of the jth site given that
the current configuration is σ is denoted by ck(j; σ) where n.n.
stands for nearest neighbors.

Event Reaction Rate

1 ∅ → CO (1− σ(j)2)k1

2 ∅ → O2 (1− σ(j)2)(1− k1)
#vacant n.n.
total n.n.

3 CO +O → CO2 + des. 1
2
σ(j)(1 + σ(j))k2

#O n.n.
total n.n.

4 O + CO → CO2 + des. 1
2
σ(j)(σ(j)− 1)k2

#CO n.n.
total n.n.

scales. Among the various surface mechanisms such as
adsorption, desorption, diffusion, etc. we focus on CO
oxidation which is a prototypical example for molecular-
level reaction-diffusion mechanism between adsorbates
on a catalytic surface. A simplified CO oxidiza-
tion model without diffusion known as the Ziff-Gulari-
Barshad (ZGB) model60 is considered. Despite being an
idealized model, the ZGB model incorporates the basic
mechanisms for the dynamics of adsorbate species during
CO oxidation on catalytic surfaces, namely, single site
updates (adsorption/desorption) and multisite reactions
(two neighboring sties being involved). Due to the reac-
tions between species, the ZGB model is non-reversible
and its stationary distribution is unknown. Nevertheless,
our sensitivity analysis methodology is capable of quan-
tify the parameter sensitivities utilizing only the rates of
the process which are provided in Table IV. The spins
of the two dimensional lattice ΛN with N lattice sites
take values σ(j) = 0 denoting a vacant site j ∈ ΛN ,
σ(j) = −1 for a CO molecule at site j and σ(j) = 1 for
an O molecule. Depending on the local configuration of
site j as well as of the nearest neighbors, the events with
the respective rates provided in Table IV are executed.
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The ZGB model is a high-dimensional CTMC which
here is simulated utilizing the stochastic simulation
algorithm44. For each step of the simulation, the rates of
the process for all sites of the lattice are needed. Inter-
estingly, in order to perform our sensitivity analysis to
the system parameters, only the rates are incorporated.
Indeed, denoting by θ = [k1, k2] the parameter vector,
then the statistical estimators of RER as well as of FIM
for the ZGB model are given by (32) and (33), respec-
tively. Nevertheless, we explicitly provide the numerical
RER estimator for convenience:

H̄(n)
1 =

1

T

n−1
∑

i=0

∆τi
[

∑

j∈ΛN

4
∑

k=1

cθk(j; σi) log
cθk(j; σi)

cθ+ǫ
k (j;σi)

+ λθ+ǫ(σi)− λθ(σi)
]

(44)

where cθk(j;σ) is the kth event of lattice site j
when the lattice configuration is σ while λθ(σ) =∑

j∈ΛN

∑4
k=1 c

θ
k(j;σ) is the total rate of the process at

state σ.
The upper panel of Fig. 6 depicts the RER as a func-

tion of simulation time when k1 = 0.35 is perturbed by
ǫ0 = 0.02 (solid line) and when k2 = 0.85 is perturbed by
the same amount. It is evident that after an initial burn-
ing time, RER converges fast to a limit value implying
that the variance of RER as an observable is small. This
can be explained by the fact that at each step of the sim-
ulation, (44) averages the over the entire lattice in order
to compute the instantaneous RER. The lower panel of
Fig. 6 depicts the RER at final time t = 100 with an ini-
tial equilibration time t0 = 10 where the instantaneous
RER is discarded. Obviously, the most sensitive parame-
ter is k1 which is related with the adsorption mechanism
while the least sensitive is k2. In order to further vali-
date our findings, we plot the lattice configuration when
either k1 or k2 is perturbed by ǫ0 = 0.02. Fig. 7 depicts
the configuration of the unperturbed system as well as
the configurations when one of the two model param-
eters are perturbed. Evidently, the configuration when
the most sensitive parameter (i.e., k1) is perturbed is less
similar to the unperturbed configuration compared to the
configuration when the least sensitive parameter (i.e., k2)
is perturbed.
Thus far, we have performed local sensitivity analysis

meaning that we were concentrated around a single point
of the parameter space. Even though various global sen-
sitivity analysis approaches have been derived based on
variance61,62 or on mutual information8, here, we present
a demonstration of global sensitivity analysis based on
a phase diagram of the most and least sensitive direc-
tions. Indeed, any direction can be seen as a vector field
and a phase diagram of a subset of the parameter regime
can be visualized. Fig. 8 depicts the most (solid) and
least (dashed) sensitive directions which correspond to
the stronger and weaker eigenvalues of the FIM, respec-
tively. Notice that the most/least sensitive directions are
parallel to the axes which asserts that the FIM is diago-
nal. This can be explained by the fact that the param-
eters of the model k1 and k2 affect different rates in a
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FIG. 6. Upper plot: Relative entropy rate as a function
of time for perturbations of both k1 (solid line) and of k2
(dashed line). An equilibration time until the process reach
its metastable regime is evident. Lower plot: RER for various
directions. The most sensitive parameter is k1.
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FIG. 7. Configurations obtained by ǫ0-perturbations of the
most and least sensitive parameters. The comparison with
the reference configuration reveals the differences between the
most and least sensitive perturbation parameters.

decoupled fashion (check Table IV).
Finally, we note that even though we have considered

a spatial KMC model with few parameters to assess their
sensitivity, our emphasis is primarily on (a) the high di-
mensionality of the process, and (b) the non-reversibility
of the process without prior knowledge of the station-
ary probability distribution. For such complex systems
there appears to be no previous systematic work in the
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literature on sensitivity analysis.
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FIG. 8. Vector field with the most (solid arrows) and least
(dashed arrows) sensitive directions computed from eigen-
value analysis of FIM. The length of the arrows is proportional
to the corresponding eigenvalue.

VI. CONCLUSIONS

Here we proposed a novel method for sensitivity analy-
sis of complex stochastic dynamics, based on the concept
of Relative Entropy Rate between two stochastic pro-
cesses. The method is computationally feasible at the
stationary regime and involves the calculation of suit-
able observables in path space for the Relative Entropy
Rate and the corresponding Fisher Information Matrix.
The stationary regime is crucial for stochastic dynamics
and can allow us to address the sensitivity analysis of
complex systems, including examples of processes with
complex landscapes that exhibit metastability and strong
intermittency, non-reversible systems from a statistical
mechanics perspective, and high-dimensional, spatially
distributed models. Our proposed methods bypass these
challenges relying on the direct Monte Carlo simulation
of rigorously derived observables for the Relative En-
tropy Rate and Fisher Information in path space rather
than on the stationary probability distribution itself. The
knowledge of the Fisher Information Matrix provides a
gradient-free method for sensitivity analysis, as well as al-
lows to address questions of parameter identifiability and
optimal experiment design in complex stochastic dynam-
ics.
Although the proposed methods are widely applicable

to many stochastic models, we demonstrated their capa-
bilities by focusing on two classes of problems. First, on
Langevin particle systems with either reversible (gradi-
ent) or non-reversible (non-gradient) forcing, highlighting
the ability of the method to carry out sensitivity analy-
sis in non-equilibrium systems; second, on spatially ex-

tended Kinetic Monte Carlo models, showing that the
method can handle high-dimensional problems. In fact,
we showed that the proposed approach to sensitivity
analysis is suitable for non-equilibrium systems, where
the structure of the stationary PDF is unknown and is
typically non-Gaussian. Finally, the sensitivity estima-
tors can be easily embedded in any available molecu-
lar simulation methods such as Kinetic Monte Carlo or
Langevin solvers.
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Appendix A: Sensitivity analysis on the

logarithmic scale

In many applications, the model parameters differ by
orders of magnitude and the only meaningful option in
order to study sensitivity analysis is to perform rela-
tive parameter perturbations. This is done by perturb-
ing the logarithm of the model parameters instead of
the parameters itself. Thus, utilizing the chain rule for
∇log θf(θ) = ∇θf(θ).∇log θθ = θ.∇θf(θ) where ‘.’ means
element by element multiplication, the logarithmic-scale
Fisher information matrix has elements:
(

FH(Qlog θ)
)

i,j
= θiθj

(

FH(Qθ)
)

i,j
, i, j = 1, ..., k . (A1)

Similarly, the logarithmic perturbation for the RER is
performed by utilizing the perturbation vector θ.ǫ instead
of ǫ. Notice that (7) continuous to be valid for the loga-
rithmic scale. Indeed, it holds that

H
(

Qθ |Qθ(1+ǫ)
)

=
1

2
(θ.ǫ)TFH(Qlog θ)(θ.ǫ) +O(|θ.ǫ|3) .

(A2)
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