Skip to main content
A highly metamorphic virus generator
International Journal of Multimedia Intelligence and Security (IJMIS) (2010)
  • Priti Desai
  • Mark Stamp, San Jose State University

Metamorphic viruses modify their code to produce viral copies that are syntactically different from their parents. The viral copies have the same functionality as the parent but typically have no common signature. This makes signature-based virus scanners ineffective for detecting metamorphic viruses. But machine learning tool such as Hidden Markov Models (HMMs) have proven effective at detecting metamorphic viruses. Previous research has shown that most metamorphic generators do not produce a significant degree of metamorphism. In this project, we develop a metamorphic engine that yields highly diverse morphed copies of a base virus. We show that our metamorphic engine easily defeats commercial virus scanners. We then show that, perhaps surprisingly, HMM-based detection is effective against our highly metamorphic viruses. We conclude with a discussion of possible improvements to our generator that might enable it to defeat statistical-based detection methods, such as those that rely on HMMs.

  • Metamorphic virus generator,
  • HMM,
  • hidden markov models
Publication Date
Publisher Statement
SJSU users: use the following link to login and access the article via SJSU databases
Citation Information
Priti Desai and Mark Stamp. "A highly metamorphic virus generator" International Journal of Multimedia Intelligence and Security (IJMIS) Vol. 1 Iss. 4 (2010)
Available at: