Interactions Between Uniformly Magnetized Spheres

Boyd F Edwards
D. Mark Riffe
Joeng-Young Ji
William A. Booth, Utah State University
Interactions between uniformly magnetized spheres

Boyd F. Edwards, D. M. Riffe, Jeong-Young Ji, and William A. Booth
Department of Physics, Utah State University, Logan, Utah 84322

(Received 31 May 2015; accepted 14 December 2016)

We use simple symmetry arguments suitable for undergraduate students to demonstrate that the magnetic energy, forces, and torques between two uniformly magnetized spheres are identical to those between two point magnetic dipoles. These arguments exploit the equivalence of the field outside of a uniformly magnetized sphere with that of a point magnetic dipole, and pertain to spheres of arbitrary sizes, positions, and magnetizations. The point dipole/sphere equivalence for magnetic interactions may be useful in teaching and research, where dipolar approximations for uniformly magnetized spheres can now be considered to be exact. The work was originally motivated by interest in the interactions between collections of small neodymium magnetic spheres used as desk toys. © 2017 American Association of Physics Teachers. [http://dx.doi.org/10.1119/1.4973409]

I. INTRODUCTION

Consider two permanent magnets of arbitrary shape. If each magnet has a nonzero dipole moment, then the dipole moments of these magnets will dominate their interactions at separations that are large compared with their sizes, and each magnet may be treated as if it were a point magnetic dipole.1 Dipolar fields and forces are often used as the starting point for analytical and numerical approximations of the forces between permanent magnets of various shapes.2–7

A uniformly magnetized sphere produces a magnetic field that is identical to its dipole field not just at large distances but everywhere outside of the sphere.8,9 One is thus naturally led to ask whether the forces and torques between two uniformly magnetized spheres are identical to those between two point dipoles, independent of their separation. Here we show that this is indeed the case.

This result has practical applications. Dipolar fields and forces have been used to approximate the interactions among assemblies of spherical nanoparticles10 and magnetic microspheres.11 Our results show that these approximations are, in fact, exact. In addition, small rare-earth magnetic spheres are used both in and out of the classroom to teach principles of mathematics, physics, chemistry, biology, and engineering.12–16 Our results enable simple dipole interactions to be used to model the dynamical interactions between these magnets.17,18

Previous calculations of the force between two uniformly magnetized spheres have been carried out in three limiting geometries: (i) for magnetizations that are perpendicular to the line through the sphere centers,19 (ii) for parallel magnetizations that make an arbitrary angle with this line,20 and (iii) for configurations with one magnetization parallel to this line and the other in an arbitrary direction.21 All three calculations yield forces that are identical to the force between two point magnetic dipoles.22–27 Unlike these calculations, however, our calculations rely on simple symmetry arguments and pertain to spheres of arbitrary sizes, positions, magnetizations, and magnetic orientations.

The force between two dipoles is noncentral. That is, this force is not generally directed along the line through the dipoles. While other noncentral magnetic forces violate Newton’s third law,28–30 we show that the paired forces between magnetic dipoles obey this law. These forces therefore exert a net \(\mathbf{r} \times \mathbf{F} \) torque on an isolated two-dipole system. As we show below, this torque is canceled by paired \(\mathbf{m} \times \mathbf{B} \) torques, which are not equal and opposite. Thus, the angular momentum is conserved.

II. POINT DIPOLE INTERACTIONS

In this section, we review the interactions between point magnetic dipoles. The magnetic field at position \(\mathbf{r} \) produced by a point dipole \(\mathbf{m} \) located at the origin is given by31,32

\[
\mathbf{B}(\mathbf{m}, \mathbf{r}) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{m} \cdot \mathbf{r} - \mathbf{m}}{r^3} \right),
\]

for \(r = |\mathbf{r}| \) satisfying \(r > 0 \). This field can be obtained from the scalar potential

\[
\varphi(\mathbf{m}, \mathbf{r}) = \frac{\mu_0 \mathbf{m} \cdot \mathbf{r}}{4\pi r^3},
\]

via

\[
\mathbf{B}(\mathbf{m}, \mathbf{r}) = -\nabla \varphi(\mathbf{r}).
\]

Because \(\mathbf{V} \cdot \mathbf{B} = 0 \), the scalar potential \(\varphi \) satisfies Laplace’s equation

\[
V^2 \varphi = 0.
\]

We consider two dipoles, \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \), that are, respectively, located at positions \(\mathbf{r}_1 \) and \(\mathbf{r}_2 \). From Eq. (1), the field produced by dipole \(\mathbf{m}_i \) is

\[
\mathbf{B}_i(\mathbf{r}) = \mathbf{B}(\mathbf{m}_i, \mathbf{r} - \mathbf{r}_i),
\]

where \(i = 1, 2 \), and where \(\mathbf{r} - \mathbf{r}_i \) is the position vector relative to dipole \(\mathbf{m}_i \) (see Fig. 1). Accordingly, the field of \(\mathbf{m}_i \) evaluated at the location of \(\mathbf{m}_j \) is

\[
\mathbf{B}_i(\mathbf{r}_j) = \frac{\mu_0}{4\pi} \left(\frac{3\mathbf{m}_1 \cdot \mathbf{r}_{ij} - \mathbf{m}_1}{r_{ij}^3} \right),
\]

where \(\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \) is the position of \(\mathbf{m}_j \) relative to \(\mathbf{m}_i \), and \(r_{ij} = |\mathbf{r}_j - \mathbf{r}_i| \).

The interaction energy between \(\mathbf{m}_j \) and the magnetic field of \(\mathbf{m}_i \) is given by
\[U_{ij} = -\mathbf{m}_i \cdot \mathbf{B}_j(\mathbf{r}_j). \]

Inserting Eq. (6) into this expression gives

\[U_{ij} = \frac{\mu_0}{4\pi} \left[\frac{\mathbf{m}_i \cdot \mathbf{m}_j}{r_{ij}^3} - 3 \left(\frac{\mathbf{m}_i \cdot \mathbf{r}_{ij}}{r_{ij}^5} \right) \left(\frac{\mathbf{m}_j \cdot \mathbf{r}_{ij}}{r_{ij}^5} \right) \right]. \]

Meanwhile, the force of \(\mathbf{m}_i \) on \(\mathbf{m}_j \) follows from

\[\mathbf{F}_{ij} = -\nabla_i U_{ij}, \]

where \(\nabla_i \) is the gradient with respect to \(\mathbf{r}_j \). Making use of Eq. (8) then yields

\[
\mathbf{F}_{ij} = \frac{3\mu_0}{4\pi} \left(\frac{\mathbf{m}_i \cdot \mathbf{r}_{ij}}{r_{ij}^5} \right) \left(\mathbf{m}_j - \frac{\mathbf{m}_i}{r_{ij}^3} \right) = \frac{3\mu_0}{4\pi} \left(\frac{\mathbf{m}_i \cdot \mathbf{r}_{ij}}{r_{ij}^5} \right) \mathbf{r}_{ij} - \frac{3\mu_0}{4\pi} \left(\frac{\mathbf{m}_i \cdot \mathbf{r}_{ij}}{r_{ij}^5} \right)^2 \mathbf{r}_{ij}.
\]

The first two terms in the square brackets are, respectively, parallel to \(\mathbf{m}_i \) and \(\mathbf{m}_j \). Consequently, \(\mathbf{F}_{ij} \) is not central—it is not generally parallel to the vector \(\mathbf{r}_{ij} \) between the dipoles. Because of the symmetry between \(i \) and \(j \), Eqs. (8) and (10) imply that

\[U_{21} = U_{12}, \]

and

\[\mathbf{F}_{21} = -\mathbf{F}_{12}, \]

confirming that Newton’s third law applies to the magnetic force between point magnetic dipoles, and ensuring that linear momentum is conserved in an isolated two-dipole system.

We now investigate the torque \(\tau_{ij} \) of \(\mathbf{m}_i \) on \(\mathbf{m}_j \), which we write as having two contributions

\[\tau_{ij} = \tau^A_{ij} + \tau^B_{ij}. \]

The first arises from \(\mathbf{m}_j \) residing in the field of \(\mathbf{m}_i \), which is given by

\[\tau^A_{ij} = \mathbf{m}_j \times \mathbf{B}_i(\mathbf{r}_j). \]

The sum of paired torques (arising from the dipoles residing in the fields of the other)

\[
\tau^A_{12} + \tau^A_{21} = \frac{3\mu_0}{4\pi} \left(\mathbf{m}_1 \cdot \mathbf{r}_{12} \right) \mathbf{m}_2 \times \mathbf{r}_{12} + \left(\mathbf{m}_2 \cdot \mathbf{r}_{12} \right) \mathbf{m}_1 \times \mathbf{r}_{12}
\]

is generally not equal to zero. Therefore, unlike the paired forces \(\mathbf{F}_{12} \) and \(\mathbf{F}_{21} \), the paired torques \(\tau^A_{12} \) and \(\tau^A_{21} \) are not generally equal and opposite. The second contribution to the torque arises from the force of \(\mathbf{m}_i \) on \(\mathbf{m}_j \)

\[\tau^B_{ij} = \mathbf{r}_{ij} \times \mathbf{F}_{ij}, \]

and because \(\mathbf{F}_{ij} \) is noncentral, the sum

\[\tau^B_{12} + \tau^B_{21} = \mathbf{r}_{12} \times \mathbf{F}_{12} \]

is also generally not equal to zero. Equations (15) and (17) and a little algebra reveal that the net torque on an isolated pair of dipoles vanishes identically

\[
\tau^A_{12} + \tau^A_{21} + \tau^B_{12} + \tau^B_{21} = 0.
\]

The torque supplied by \(\tau^A_{12} \) and \(\tau^A_{21} \) therefore cancels the torque supplied by \(\tau^B_{12} \) and \(\tau^B_{21} \), and the angular momentum is conserved. Thus, an isolated dipole-dipole system does not spontaneously rotate, and there is no exchange between mechanical and electromagnetic momentum. Such exchanges have been the subject of considerable study.29,34–36

III. FORCE BETWEEN SPHERES

We now come to the crux of this article, the force between two uniformly magnetized spheres. We present four separate arguments that show that the force between uniformly magnetized spheres is identical to the force between point dipoles. While each proof is sufficient to show this equivalence, each utilizes different concepts from mechanics and electromagnetism, and each has pedagogical value.

As seen in Fig. 1, we take sphere \(i \) to have position \(\mathbf{r}_i \), radius \(a_i \), magnetization \(\mathbf{M}_i \), and total dipole moment

\[\mathbf{m}_i = \frac{4}{3} \pi a_i^3 \mathbf{M}_i. \]

Its magnetic field is given by \(\mathbf{B}_i = \frac{2\mu_0}{3} \mathbf{m}_i \) inside the sphere (for \(|\mathbf{r} - \mathbf{r}_i| < a_i \)) and by Eq. (5) outside the sphere.8,9

We treat \(\mathbf{M}_i \) as spatially uniform and constant in time, neglecting any demagnetization by external fields. This assumption is appropriate for high coercivity materials.37,38

A. Newton’s third law

A five-step argument involving Newton’s third law shows that the force between two spheres with uniform magnetizations \(\mathbf{M}_1 \) and \(\mathbf{M}_2 \) is identical to the force between two point dipoles with corresponding magnetic moments \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \), located at the same positions and with the same magnetic orientations as the spheres. Figure 2 illustrates the argument. In Fig. 2(a), as in the preceding discussion, \(\mathbf{F}_{12} \) represents the force of dipole 1 on dipole 2. This force is produced by the field \(\mathbf{B}_1 \) of dipole 1. In Fig. 2(b), sphere 1 produces the same field \(\mathbf{B}_1 \), and therefore exerts the same force \(\mathbf{F}_{12} \) on dipole 2. Newton’s third law is shown in Fig. 2(c), giving the
be determined by first integrating the energy density B. Direct integration

For the integral over sphere 1, we use $\nabla \varphi_1 \cdot \nabla \varphi_2 dV$ and the divergence theorem to write

$$\int_{S_1} \nabla \varphi_1 \cdot \nabla \varphi_2 \cdot \hat{n}_1 dA,$$

where S_1 denotes the integral over the surface of sphere 1, and \hat{n}_1 is the unit vector directed normally outward from the sphere’s surface. The quantity $\nabla \varphi_1 \cdot \nabla \varphi_2$ is continuous across this surface, and the surface values of φ_1 and φ_2 are identical to the potentials of point dipoles. Therefore, the integral over sphere 1 is the same as it would be if the spheres were replaced by equivalent point dipoles. Similarly, the integral over sphere 2 is the same as for equivalent point dipoles. Because the fields outside of both spheres match the fields of

$$U_{ij} = -\int_j M_j \cdot B_i dV = -M_j \cdot \int_j B_i dV.$$ \hfill (20)

Here, the integral is over the volume of sphere j and the second equality exploits the uniformity of M_j. If all sources of a magnetic field lie outside a particular sphere, then the spatial average of the field over the sphere is given by the value of the field at the sphere center; thus

$$\int_j B_i dV = \frac{4}{3} \pi d_i^3 B_j(r_j).$$ \hfill (21)

Equations (19)–(21) give $U_{ij} = -m_i \cdot B_j(r_j)$, which replicates Eq. (7). Thus, the energy of interaction between the two spheres is identical to the energy of interaction between two point dipoles. The associated force $F_{ij} = -\nabla U_{ij}$ of sphere i on sphere j is therefore identical to the force between two point dipoles, and obeys Newton’s third law.

C. Field energy

We can also show the force equivalence by integrating the magnetic energy density $B^2/2\mu_0$ over all space, giving the total energy

$$U(r_1, r_2) = \frac{1}{2\mu_0} \int (B_1 + B_2)^2 dV = \frac{1}{2\mu_0} \left(B_1^2 + 2 B_1 \cdot B_2 + B_2^2 \right) dV.$$ \hfill (22)

Because the magnetic energy of a single dipole does not depend on its location in space, the self-energy integrals $(2\mu_0)^{-1} \int B_i^2 dV$ do not depend on r_i. Therefore, the force $F_{ij} = -\nabla U$ on sphere j depends only on the interaction energy

$$U_{int} = \frac{1}{\mu_0} \int B_1 \cdot B_2 dV = \frac{1}{\mu_0} \left(\int_{1 \text{ inside}} + \int_{2 \text{ outside}} \right) \nabla \varphi_1 \cdot \nabla \varphi_2 dV,$$ \hfill (23)

where we have inserted Eq. (3), and we have separated the integral over all space into integrals over sphere 1, sphere 2, and the region outside of both spheres.

For the integral over sphere 1, we use $\nabla^2 \varphi_2 = 0$ and the divergence theorem to write

$$\int \nabla \varphi_1 \cdot \nabla \varphi_2 dV = \int \nabla \cdot (\varphi_1 \nabla \varphi_2) dV = \int_{S_1} \varphi_1 \nabla \varphi_2 \cdot \hat{n}_1 dA,$$ \hfill (24)

B. Direct integration

The force between two uniformly magnetized spheres can be determined by first integrating the energy density $-M_j \cdot B_i$ associated with sphere j sitting in the magnetic field B_i, giving the total interaction energy

\[U_{ij} = \int_j M_j \cdot B_i dV = -M_j \cdot \int_j B_i dV. \] \hfill (20)
equivalent point dipoles, all three integrals in Eq. (23) are the same for point dipoles as for uniformly magnetized spheres. Therefore, the force $F_{ij} = -V_i U_{int}$ must also be the same.

D. Stress tensor

The total force on an object can be calculated by integrating the Maxwell stress tensor over an arbitrary surface surrounding the object. The magnetic stress tensor depends only on the magnetic field. The field outside a uniformly magnetized sphere is the same as the field of an equivalent point dipole located at its center. The total field produced by and outside of two uniformly magnetized spheres, and the associated stress tensor, is the same as that of two point dipoles. Therefore, the force between spheres must be the same as the force between point dipoles.

IV. TORQUE BETWEEN SPHERES

Here, we calculate the torque τ_{ij} of sphere i on sphere j. This torque has two contributions, as before. The first arises from sphere j residing in the field of sphere i and can be obtained by integrating the torque density $M_j \times B_j$ over the volume of sphere j, giving

$$\tau^0_{ij} = \int M_j \times B_j \, dV = M_j \times \int B_j \, dV.$$

(25)

Invoking Eqs. (19) and (21) gives $\tau^0_{ij} = m_i \times B_i(r_j)$, which replicates Eq. (14). Thus, τ^0_{ij} between two uniformly magnetized spheres is identical to the torque between two point magnetic dipoles.

The second contribution arises from the force of sphere i on sphere j, which can be obtained from the interaction energy density $u_{ij} = -M_j \cdot B_j$ according to

$$F_{ij} = -\int u_{ij} \, dV.$$

(26)

This gives the same force as $F_{ij} = -V_i U_{ij}$, with U_{ij} given by Eq. (7). The torque follows by integrating the torque density $r \times (-V_i u_{ij})$ over the volume of sphere j to give

$$\tau^s_{ij} = -\int r \times V_i u_{ij}(r) \, dV.$$

(27)

Rewriting this expression using the position $r' = r - r_j$ relative to the center of sphere j gives

$$\tau^s_{ij} = -\int (r' + r_j) \times V_i u_{ij}(r) \, dV$$

$$= -\int r' \times V_i \Psi(r') \, dV' - r_j \times \int V_i u_{ij}(r) \, dV,'$$

(28)

where $\Psi(r') = u_{ij}(r' + r_j)$. Converting the first integral into a surface integral gives

$$\int r' \times V_i \Psi(r') \, dV' = -\int V' \times (\Psi r') \, dV'$$

$$= -\int \hat{n}_j \times r' \Psi \, dA'. $$

(29)

(30)

Since r' is parallel to the unit normal vector \hat{n}_j, their cross product is zero and the integral vanishes. Combining Eqs. (26) and (28) then gives

$$\tau^s_{ij} = r_j \times F_{ij},$$

(31)

which is identical to Eq. (16). Thus, the torque associated with the force on a uniformly magnetized sphere in a dipole field is the same as the torque on the corresponding point dipole. These results ensure that the net torque on an isolated two-sphere system is zero, as seen earlier for point dipoles.

V. SUMMARY

We have demonstrated that the energy, forces, and torques between two uniformly magnetized spheres are identical to those between two point magnetic dipoles. This equivalence immediately extends to uniformly polarized spheres and point electric dipoles because the fields, forces, and torques of electric dipoles have the same mathematical forms as their magnetic counterparts, and the field outside of a uniformly polarized sphere is identical to the electric dipole field.

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from NSF Grant No. 1332265, discussions with W. Farrell Edwards on the applicability of Newton’s third law to magnetostatic interactions, correspondence with David Vokoun about calculations of the force between magnet spheres in special cases, correspondence with Marco Beleggia about the potential theory argument, and discussions with Kirk McDonald and David Griffiths regarding the point-sphere equivalence. The authors are especially grateful to David Griffiths for suggesting the stress tensor argument to us, and to Kirk McDonald for pointing out a mean-value argument that simplifies some of the calculations.

10M. Varón, M. Beleggia, T. Kasama, R. J. Harrison, R. E. Dunin-Borkowski, V. F. Puntes, and C. Frandsen, “Dipolar magnetism in ordered

133

Edwards et al.

16The Zen Gallery, curated by Shihan Qu, shows photos of various magnetic sculptures including models of fractals, molecules, lattices, and Platonic solids <http://zenmagnets.com/gallery/> (accessed February 9, 2016).

15Typing “Zen Magnets” into the YouTube search field at <https://www.youtube.com> identifies over 90,000 videos describing various magnet structures (accessed March 23, 2016). As of August 22, 2014, the most popular of these had a total view count exceeding 145×10^6 (Ref. 13, Appendix D).

14The Zen Gallery, curated by Shihan Qu, shows photos of various magnetic sculptures including models of fractals, molecules, lattices, and Platonic solids <http://zenmagnets.com/gallery/> (accessed February 9, 2016).

13Typing “Zen Magnets” into the YouTube search field at <https://www.youtube.com> identifies over 90,000 videos describing various magnet structures (accessed March 23, 2016). As of August 22, 2014, the most popular of these had a total view count exceeding 145×10^6 (Ref. 13, Appendix D).

10Typing “Zen Magnets” into the YouTube search field at <https://www.youtube.com> identifies over 90,000 videos describing various magnet structures (accessed March 23, 2016). As of August 22, 2014, the most popular of these had a total view count exceeding 145×10^6 (Ref. 13, Appendix D).

8R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, Boston, MA, 1964), Vol. II, pp. 26–25. Here, Feynman discusses the example of the non-central force between two positively charged particles, one moving in the $+x$ direction and the other moving in the $+y$ direction. At the instant that particle 1 is at the coordinate origin and particle 2 is on the $+y$ axis, the electric forces are central and repulsive, but particle 1 exerts a non-central magnetic force on particle 2 in the $+x$ direction, while particle 2 exerts no magnetic force on particle 1. Thus, Newton’s third law does not apply, raising a paradox about the origin of the extra mechanical momentum.

7A. Caprez and H. Batelaan, “Feynman’s relativistic electrodynamics paradox and the Aharonov-Bohm effect,” Found. Phys. 39, 295–306 (2009). Here, the authors show that the extra mechanical momentum of Feynman’s paradox is hidden in the electromagnetic fields.

5Reference 22, p. 246.

