Skip to main content
Approximate Mean-field Equations of Motion for Quasi-two-dimensional Bose-Einstein Condensates
Physical Review E
  • Mark Edwards, Georgia Southern University
  • Michael Krygier, Georgia Southern University
  • Hadayat Seddiqi, Georgia Southern University
  • Brandon Benton, University of Maryland
  • Charles W. Clark, University of Maryland
Document Type
Publication Date
We present a method for approximating the solution of the three-dimensional, time-dependent Gross-Pitaevskii equation (GPE) for Bose-Einstein-condensate systems where the confinement in one dimension is much tighter than in the other two. This method employs a hybrid Lagrangian variational technique whose trial wave function is the product of a completely unspecified function of the coordinates in the plane of weak confinement and a Gaussian in the strongly confined direction having a time-dependent width and quadratic phase. The hybrid Lagrangian variational method produces equations of motion that consist of (1) a two-dimensional (2D) effective GPE whose nonlinear coefficient contains the width of the Gaussian and (2) an equation of motion for the width that depends on the integral of the fourth power of the solution of the 2D effective GPE. We apply this method to the dynamics of Bose-Einstein condensates confined in ring-shaped potentials and compare the approximate solution to the numerical solution of the full 3D GPE.

Authors have the right to use all or part of the Article, including the APS-prepared version without revision or modification, on the author(s)’ web home page or employer’s website. (source: Article obtained from Physical Review E.

Citation Information
Mark Edwards, Michael Krygier, Hadayat Seddiqi, Brandon Benton, et al.. "Approximate Mean-field Equations of Motion for Quasi-two-dimensional Bose-Einstein Condensates" Physical Review E Vol. 86 Iss. 056710 (2012)
Available at: