Skip to main content
Article
Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors
Toxins
  • Katharyn J. Affeldt
  • Marion Brodhagen, Western Washington University
  • Nancy P. Keller
Document Type
Article
Publication Date
9-1-2012
Keywords
  • aflatoxin; oxylipin; G protein-coupled receptor (GPCR); sclerotia
Disciplines
Abstract

Oxylipins regulate Aspergillus development and mycotoxin production and are also involved inAspergillus quorum sensing mechanisms. Despite extensive knowledge of how these oxylipins are synthesized and what processes they regulate, nothing is known about how these signals are detected and transmitted by the fungus. G protein-coupled receptors (GPCR) have been speculated to be involved as they are known oxylipin receptors in mammals, and many putative GPCRs have been identified in the Aspergilli. Here, we present evidence that oxylipins stimulate a burst in cAMP in A. nidulans, and that loss of an A. nidulans GPCR, gprD, prevents this cAMP accumulation. A. flavus undergoes an oxylipin-mediated developmental shift when grown at different densities, and this regulates spore, sclerotial and aflatoxin production. A. flavus encodes two putative GprD homologs, GprC and GprD, and we demonstrate here that they are required to transition to a high-density development state, as well as to respond to spent medium of a high-density culture. The finding of GPCRs that regulate production of survival structures (sclerotia), inoculum (spores) and aflatoxin holds promise for future development of anti-fungal therapeutics.

Required Publisher's Statement

© 2012 MDPI

Comments

© 2012 MDPI

Subjects - Topical (LCSH)
Aspergillus--Microbiology; Aspergillus; Quorum sensing (Microbology)
Genre/Form
articles
Type
Text
Creative Commons License
Creative Commons Attribution 3.0
Language
English
Format
application/pdf
Citation Information
Katharyn J. Affeldt, Marion Brodhagen and Nancy P. Keller. "Aspergillus Oxylipin Signaling and Quorum Sensing Pathways Depend on G Protein-Coupled Receptors" Toxins Vol. 4 Iss. 9 (2012) p. 695 - 717
Available at: http://works.bepress.com/marion_brodhagen/1/