Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

Mahendra Kumar Trivedi, *Trivedi Global Inc.*
Rama Mohan Tallapragada, *Trivedi Global Inc.*
Alice Branton, *Trivedi Global Inc.*
Dahryn Trivedi, *Trivedi Global Inc.*
Gopal Nayak, *Trivedi Global Inc.*, et al.
Characterization of Physical, Thermal and Structural Properties of Chromium (VI) Oxide Powder: Impact of Biofield Treatment

Mahendra Kumar Trivedi1, Rama Mohan Tallapragada1, Alice Branton1, Dahryn Trivedi1, Gopal Nayak1, Omprakash Latiyal2, and Snehasis Jana*

1Trivedi Inc., S Eastern Avenue Suite, Henderson, USA
2Trivedi Science Research Laboratory Pvt. Ltd., Madhya Pradesh, India

Abstract

Chromium (VI) oxide (CrO₃) has gained extensive attention due to its versatile physical and chemical properties. The objective of the present study was to evaluate the impact of biofield treatment on physical, thermal and structural properties of CrO₃ powder. In this study, CrO₃ powder was divided into two parts i.e. control and treatment. Control part was remained as untreated and treated part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated CrO₃ samples were characterized using Thermo gravimetric analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). DTA showed that the melting point of treated CrO₃ was increased upto 212.65°C (T3) as compared to 201.43°C in control. In addition, the latent heat of fusion was reduced upto 51.70% in treated CrO₃ as compared to control. TGA showed the maximum thermal decomposition temperature (Tₘₙ) around 330°C, was increased upto 340.12°C in treated CrO₃ sample. XRD data revealed that lattice parameter and unit cell volume of treated CrO₃ samples were reduced by 0.25 and 0.92% respectively, whereas density was increased by 0.93% in treated CrO₃ sample as compared to control. The crystal size of treated CrO₃ was increased from 46.77 nm (control) to 60.13 nm after biofield treatment. FT-IR spectra showed the absorption peaks corresponding to Cr=O at 906 and 944 cm⁻¹ in control, which were increased to 919 and 949 cm⁻¹ in treated CrO₃ after biofield treatment. Overall, these results suggest that biofield treatment has substantially altered the physical, thermal and structural properties of CrO₃ powder.

Keywords: Biofield treatment; Chromium (VI) oxide powder; X-Ray diffraction; Fourier Transform Infrared Spectroscopy; TGA-DTA

Introduction

Chromium oxides gain significant attention due to their diverse technological application in various industries. Chromium based oxides are used in various chemical reactions due to their wide range of oxidation states, it includes Cr₂O₃, CrO₃, Cr₂O₅, and CrO₃ etc [1]. Out of these, chromium oxides, CrO₃ is an important compound for automobile industries due to its high corrosion resistance properties. In these industries, CrO₃ is used for plating the chromium on car body and other auto components. In addition, it is a strong oxidising agent, which enables it to be used in various pharmaceutical and chemical industries [2,3]. It is also reported that Cr (VI) complexes exhibit the antibacterial activity against Pseudomonas aeruginosa bacteria [4]. In crystal structure of CrO₃, its molecules form the chains of CrO₄ tetrahedra, which are linked at corner oxygen [5]. Furthermore, the crystal structure parameters such as lattice parameter, unit cell volume of CrO₃ play a crucial role in modulating its chemical and physical properties. Thus, based on the above applications of CrO₃ powder, authors planned to investigate an approach that could modify its physical, thermal and structural properties.

In physics, energy is a property of object which can be transferred to other objects, but it neither be created nor be destroyed. Albert Einstein proposed the relationship between mass and energy i.e. $E=mc^2$ [6]. This energy can be transferred through various processes such as thermal, chemical, kinetic, nuclear etc. Similarly, human nervous system consists of neurons, which have the ability to transmit information in the form of electrical signals [7-9]. Due to this, a human has ability to harness the energy from environment/universe and can transmit into any object (living or non-living) around the Globe. The object(s) always receive the energy and responded into useful way that is called biofield energy. This process is termed as biofield treatment. Mr. Trivedi’s unique biofield treatment (The Trivedi Effect) is known to alter the physical, structural and atomic characteristic in various metals [10-12] and ceramics [13]. Additionally, the impact of biofield treatment has been studied extensively in various fields such as microbiology [14,15], biotechnology [16,17], and agriculture [18-20]. Moreover, biofield treatment has significantly altered the particle size and crystallite size in zinc powder upto six and two folds, respectively [21]. In addition, it has substantially altered the unit cell volume and molecular weight in vanadium pentoxide [13]. Thus, based on the literature and excellent outcomes of biofield treatment, authors interested to investigate the effect of biofield treatment on physical, thermal and structural properties of CrO₃ powder.

Materials and Methods

The CrO₃ powder was purchased from Sigma Aldrich, India. The sample was equally divided into two parts, considered as control and treated. Treated group was in sealed pack and handed over to Mr. Trivedi for biofield treatment under laboratory condition. Mr. Trivedi provided the biofield treatment through his energy transmission process to the treated group without touching the sample. The control and treated samples were characterized using Thermo gravimetric
analysis-differential thermal analysis (TGA-DTA), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR).

Thermo Gravimetric Analysis-Differential Thermal Analysis (TGA-DTA)

Thermal analysis of control and treated CrO₃ was analysed using Mettler Toledo simultaneous TGA and Differential thermal analyser (DTA). The samples were heated from room temperature to 400°C with a heating rate of 5°C/min under air atmosphere. From DTA, melting point and latent heat of fusion (ΔH) were computed using integral area under peaks. Thermal decomposition temperature (Tmax) was recorded from TGA curve. Percent change in melting point was calculated using following equation:

\[
\% \text{ change in Melting Point} = \left(\frac{T_{\text{Treated}} - T_{\text{Control}}} {T_{\text{Control}}} \right) \times 100
\]

Where, TControl and TTreated are the melting point of control and treated samples, respectively.

Similarly, percent change in ΔH and Tmax were calculated.

X-ray Diffraction study (XRD)

XRD analysis of control and treated CrO₃ powder was carried out on Phillips, Holland PW 1710 X-ray diffractometer system, which had a copper anode with nickel filter. The radiation of wavelength used by the XRD system was 1.54056Å. The data obtained from this XRD were in the form of a chart of 2θ vs. intensity and a detailed table containing peak intensity counts, d value (Å), peak width (θ °), relative intensity (%) etc. Additionally, PowderX software was used to calculate lattice parameter and unit cell volume of CrO₃ powder samples. Weight of the unit cell was calculated as, molecular weight multiplied by the number of atoms present in a unit cell.

The crystallite size (G) was calculated by using formula:

\[
G = \frac{k\lambda}{b\cos\theta}
\]

Where, λ is the wavelength of radiation used, b is full width half maximum (FWHM) and k is the equipment constant (0.94). Furthermore, the percent change in the lattice parameter was calculated using following equation:

\[
\% \text{ change in lattice parameter} = \left(\frac{A_{\text{Treated}} - A_{\text{Control}}} {A_{\text{Control}}} \right) \times 100
\]

Where AControl and ATreated are the lattice parameter of treated and control samples respectively. Similarly, the percent change in all other parameters such as unit cell volume, density, molecular weight, and crystallite size were calculated.

Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR spectroscopic analysis was carried out to evaluate the impact of biofield treatment at atomic and molecular level like bond strength, stability, and rigidity of structure etc. [22]. FT-IR analysis of control and treated CrO₃ samples was performed on Shimadzu, Fourier transform infrared (FT-IR) spectrometer with frequency range of 300-4000 cm⁻¹ was used.

Results and Discussion

Thermo Gravimetric Analysis-Differential Thermal Analysis (TGA-DTA)

Thermal analysis of control and treated CrO₃ samples was performed using TGA-DTA and results are presented in Table 1. DTA result showed that melting point of control sample was 201.43°C in control, however it was changed to 204.28°C, 204.24°C, 212.65°C and 200.88°C in treated CrO₃ samples T1, T2, T3 and T4, respectively. It indicated that melting point was increased by 1.41, 1.40, and 5.57% in T1, T2, and T3, respectively, whereas a slight change (-0.27%) was observed in T4, as compared to control. Furthermore, data also showed that the simultaneous DTA (SDTA) integral area (denoted as negative value) of melting point was 235.53, 252.69, 235.13, 414.03, and 142.22 s in control, T1, T2, T3 and T4, respectively (Table 1). Further, SDTA integral values were used to compute the latent heat of fusion of control and treated CrO₃ samples. The latent heat of fusion (ΔH) was 486.87 J/g in control, whereas it was changed to 507.37, 274.04, 235.15, and 433.09 J/g in T1, T2, T3 and T4 respectively. Thus, data suggest that ΔH was increased by 4.21% in T1, however it was decreased by 43.71, 51.70, and 11.05% in T2, T3 and T4, respectively as compared to control. The melting point is fundamentally related with the kinetic energy and thermal vibration of the molecules, whereas latent heat of fusion is relates with the potential energy of molecules. Thus, the changes in melting point and ΔH after biofield treatment indicated that biofield treatment probably altered the kinetic and potential energy of the CrO₃ molecules. It is assumed the bio field treatment might transfer the energy to treated sample, which probably altered the internal energy of the molecules. Besides, the thermal decomposition temperature (Tmax) was observed at 330°C in control and it was increased to 335, 336.98, 333.4, and 340.1°C in T1, T2, T3 and T4 respectively. It could be due to decomposition of CrO₃ to Cr₂O₅ and Cr₃O₈. It is reported that in thermal decomposition process of CrO₃, first converts to Cr₂O₅ followed by CrO País [23]. Further, data suggest that Tmax was increased by 1.52, 2.12, 1.02, and 3.07% in T1, T2, T3 and T4 respectively as compared to control. It could be due to increase in thermal stability of treated CrO₃ samples after biofield treatment. In this process, samples lost around 13.28, 14.49, 82.57, 10.48, and 6.03% of its weight in control, T1, T2, T3, and T4 respectively. Recently, it was reported that biofield treatment has significantly altered the percent weight loss in treated lead and tin powders [12]. The percent of weight loss of CrO₃ powder sample was higher in T1, T2, and T3 but lesser in T4, as compared to control. It could be due to change in intermolecular interaction and thermal stability in treated CrO₃ after biofield treatment. Hence, TGA-DTA study revealed that biofield treatment has significantly altered the thermal properties of CrO₃ powder.

X-ray Diffraction study (XRD)

XRD pattern of control and treated CrO₃ samples are presented in Figure 1. The control sample peaks in XRD pattern were observed at 2θ=21.33°, 26.01°, 26.42°, 31.16°, 37.53°, 37.97°, and 40.03° which were

Table 1: TGA-DTA analysis of chromium (VI) oxide powder.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting point (°C)</td>
<td>201.43</td>
<td>204.28</td>
<td>204.24</td>
<td>212.65</td>
<td>200.88</td>
</tr>
<tr>
<td>% change</td>
<td>1.41</td>
<td>1.4</td>
<td>5.57</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td>SDTA integral area at melting point (°C)</td>
<td>-235.53</td>
<td>-252.69</td>
<td>-235.13</td>
<td>-414.03</td>
<td>-142.22</td>
</tr>
<tr>
<td>Latent heat of fusion, ΔH (J/g)</td>
<td>486.87</td>
<td>507.37</td>
<td>274.04</td>
<td>235.15</td>
<td>433.09</td>
</tr>
<tr>
<td>% change</td>
<td>4.21</td>
<td>-43.71</td>
<td>-51.70</td>
<td>-11.05</td>
<td></td>
</tr>
<tr>
<td>Decomposition Temp, Tmax (°C)</td>
<td>330</td>
<td>335</td>
<td>336.98</td>
<td>333.36</td>
<td>340.12</td>
</tr>
<tr>
<td>Percent change</td>
<td>1.52</td>
<td>2.12</td>
<td>1.02</td>
<td>3.07</td>
<td></td>
</tr>
<tr>
<td>Percent weight loss at Tmax</td>
<td>-13.28</td>
<td>-14.49</td>
<td>-82.57</td>
<td>-10.48</td>
<td>-6.03</td>
</tr>
</tbody>
</table>

supported by literature data of CrO$_3$ [24]. However, XRD of treated CrO$_3$ sample exhibited peaks at 2Θ=21.39°, 26.13°, 26.51°, 31.32°, 37.63°, and 38.11°. The intense peaks in XRD pattern of control and treated CrO$_3$ samples suggested its crystalline nature. Further, the crystal structure parameter such as lattice parameter, and unit cell volume were calculated using PowderX software and their percent change with respect to control are presented in Figure 2. Data showed that the lattice parameter and unit cell volume was reduced by 0.25 and 0.92%, respectively as compared to control. The change in unit cell volume can be considered as volumetric strain. Herein, negative volumetric strain found in treated CrO$_3$ indicated that biofield treatment possibly induced compressive stress along the lattice parameter “a” that led to reduced unit cell volume in treated sample. Recently, alteration in unit cell volume and lattice parameter in zinc oxide, iron oxide and copper oxides using biofield treatment was reported by our group [25]. In addition, the density of treated CrO$_3$ was increased by 0.93% and molecular weight was reduced by 0.92% as compared to control. It could be possible if number of protons and neutron altered after biofield treatment. Thus, it is hypothesized that a weak reversible nuclear level reaction including neutrons-protons and neutrinos might occur in treated CrO$_3$ powders after biofield treatment [26]. Besides, the crystallite size was calculated using Scherrer formula is presented in Table 2. Data showed that crystallite size was 46.77 nm in control, whereas it was increased to 60.13 nm in treated sample. It suggested that crystallite size was increased by 28.57% as compared to control. Previously, our group reported that biofield treatment has increase the crystallite size in silicon dioxide [27], silicon carbide [28] and antimony [29]. Furthermore, in order to increase the crystallite size, sufficient amount of energy is required to move the crystallite boundaries. Thus, it is hypothesized that the energy required for this process might be transferred through biofield treatment and that might be responsible for increase in crystallite size. Hence, XRD data revealed that biofield treatment has altered the physical and structural properties of CrO$_3$ powder.

Fourier Transform Infrared Spectroscopy (FT-IR)

FT-IR spectrum of control and treated are shown in Figure 3. IR spectra exhibited the absorption peaks at 496, 736, 906, and 944 cm$^{-1}$ in control, whereas these peaks were shifted to higher wavenumber i.e. 501, 741, 919, and 949 cm$^{-1}$ in treated CrO$_3$ spectra. The peaks at 906 and 944 cm$^{-1}$ in control and 919 and 949 cm$^{-1}$ in treated CrO$_3$, can be attributed to chromyl (Cr=O) vibrations [30]. The wavenumber observed in IR spectra is directly proportional to bond force constant. Thus it is assumed that the increase in wave number for Cr=O vibration could be due to increase in bond force constant after biofield treatment.
In our previous study on iron oxide, biofield treatment had altered the bond strength of Fe–O bond [25]. Thus, it is hypothesized that the energy transferred through biofield treatment probably enhanced the Cr=O bond strength in treated CrO₃ molecules, which may lead to increase bond force constant, thus increase the wavenumber. In addition, the increase in Cr=O bond strength could increase the stability of CrO₃ molecules. It is also supported by increase in thermal stability of treated CrO₃ after biofield treatment.

Conclusion

The thermal analysis of CrO₃ using TGA-DTA revealed that biofield treatment has altered the melting point, ΔH, and T_max. The melting point was increased upto 5.57% in treated CrO₃, whereas ΔH was reduced upto 51.70% in treated as compared to control. It is assumed that biofield treatment probably altered the internal energy of treated CrO₃ samples, which may lead to alter the melting point and ΔH. In addition, T_max was slightly increased up to 3.077% as compared to control. Besides, XRD data exhibited the alteration in lattice parameter, unit cell volume, density, and molecular weight in treated CrO₃ as compared to control. The crystallite size of treated CrO₃ sample was increased by 28.57% as compared to control. It may be due to movement of crystallite boundaries through biofield energy, which probably transferredvia biofield treatment. FT-IR spectra revealed that biofield treatment has altered the thermal, physical, and structural properties of CrO₃ powder. It is also assumed that biofield treated CrO₃ could be useful for chrome plating applications in automobile industries.

Acknowledgement

Authors gratefully acknowledged to Dr. Cheng Dong of NLSC, Institute of Physics, and Chinese academy of Sciences for providing the facilities to use PowderX software for analyzing XRD data. Authors also would like to thank Trivedi Science, Trivedi master wellness and Trivedi testimonials for their support during the work.

References