Skip to main content
Collaborative Filtering for Interactive Database Exploration
21st International Conference on Scientific and Statistical Databases (2009)
  • G. Chatzopoulou, University of California - Riverside
  • Magdalini Eirinaki, San Jose State University
  • N. Polyzotis
Relational database systems are becoming increasingly popular in the scientific community to support the interactive exploration of large volumes of data. In this scenario, users employ a query interface (typically, a web-based client) to issue a series of SQL queries that aim to analyze the data and mine it for interesting information. First-time users, however, may not have the necessary knowledge to know where to start their exploration. Other times, users may simply overlook queries that retrieve important information. To assist users in this context, we draw inspiration from Web recommender systems and propose the use of personalized query recommendations. The idea is to track the querying behavior of each user, identify which parts of the database may be of interest for the corresponding data analysis task, and recommend queries that retrieve relevant data. We discuss the main challenges in this novel application of recommendation systems, and outline a possible solution based on collaborative filtering. Preliminary experimental results on real user traces demonstrate that our framework can generate effective query recommendations.
Publication Date
June, 2009
Citation Information
G. Chatzopoulou, Magdalini Eirinaki and N. Polyzotis. "Collaborative Filtering for Interactive Database Exploration" 21st International Conference on Scientific and Statistical Databases (2009)
Available at: