Thermal Stress and Predation Risk Trigger Distinct Transcriptomic Responses in the Intertidal Snail *Nucella lapillus*

Nathaniel D. Chu, *Northeastern University*
Luke P. Miller, *Northeastern University*
Stefan T. Kaluziak, *Northeastern University*
Geoffrey C. Trussell, *Northeastern University*
Steven V. Vollmer, *Northeastern University*
Thermal stress and predation risk trigger distinct transcriptomic responses in the intertidal snail *Nucella lapillus*

Nathaniel D. Chu¹,³*, Luke P. Miller¹,², Stefan T. Kaluziak¹, Geoffrey C. Trussell¹, and Steven V. Vollmer¹

1: Northeastern University, Marine Science Center, 430 Nahant Road, Nahant, MA 01908, USA
2: Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
3: Current address: Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Keywords: thermal stress, nonconsumptive effects, *Nucella lapillus*, predation risk, RNA-seq, transcriptomics

* Corresponding author: Nathaniel D. Chu
Address: Microbiology Graduate Program, Building 68-139, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
E-mail: ndchu@mit.edu

Running headline: Transcriptomic responses to intertidal stress
Thermal stress and predation risk have profound effects on rocky shore organisms, triggering changes in their feeding behavior, morphology, and metabolism. Studies of thermal stress have shown that underpinning such changes in several intertidal species are specific shifts in gene and protein expression (e.g., upregulation of heat-shock proteins). But relatively few studies have examined genetic responses to predation risk. Here, we use next-generation RNA sequencing (RNA-seq) to examine the transcriptomic (mRNA) response of the snail *Nucella lapillus* to thermal stress and predation risk. We found that, like other intertidal species, *N. lapillus* displays a pronounced genetic response to thermal stress by upregulating many heat-shock proteins and other molecular chaperones. In contrast, the presence of a crab predator (*Carcinus maenas*) triggered few significant changes in gene expression in our experiment, and this response showed no significant overlap with the snail’s response to thermal stress. These different gene expression profiles suggest that thermal stress and predation risk could pose distinct and potentially additive challenges for *N. lapillus* and that genetic responses to biotic stresses such as predation risk might be more complex and less uniform across species than genetic responses to abiotic stresses such as thermal stress.
INTRODUCTION

Rocky shore organisms must regularly cope with intense abiotic and biotic stresses. Chief among these is thermal stress, which often determines intertidal organisms’ biogeographic ranges and clinal zonation (Somero 2002; Helmuth et al. 2006). Thermal stress can also alter foraging behavior (Jones and Boulding 1999; Pincebourde et al. 2008), select for heat-resistant phenotypes (Etter 1988; Dong et al. 2008), and induce physiological and cellular changes (Lockwood et al. 2010; Connor and Gracey 2011). Cellular responses (e.g., changes in protein and gene expression) to thermal stress have been studied in a variety of intertidal organisms, including algae (Collén et al. 2007; Pearson et al. 2010; Liu et al. 2013), mussels (Gracey et al. 2008; Lockwood et al. 2010; Connor and Gracey 2011; Place et al. 2012), and oysters (Lang et al. 2009). A common pattern in these studies was upregulation of genes encoding heat-shock proteins, which act as molecular chaperones during cellular stress (Feder and Hofmann 1999), as well as upregulation of genes encoding apoptosis regulators and other protein chaperones.

Recently, a growing body of work has demonstrated that predation risk can also be a major source of stress for rocky shore organisms (Long and Hay 2012; Benedetti-Cecchi and Trussell 2014). In addition to exerting well-known consumptive effects on their prey—whereby a predator alters prey population density by actively consuming individuals (Paine 1966)—predators also exert nonconsumptive effects, where the risk of predation alone alters prey behavior and morphology (Trussell et al. 2006a). Rocky shore organisms often detect predation risk via waterborne cues (Trussell et al. 2003) and respond by reducing foraging activity, which can produce cascading indirect effects throughout the community. The strength of these effects can rival or exceed those caused by predators actively consuming prey (Trussell et al. 2006a).

Moreover, as with thermal stress, emerging evidence indicates that stress imposed by predation
risk can trigger elevated respiration (Rovero et al. 1999) and increased production of heat-shock proteins (Pijanowska and Kloc 2004; Pauwels et al. 2005; Slos and Stoks 2008), antioxidant enzymes (Slos and Stoks 2008), and stress hormones (Creel et al. 2009; Sheriff et al. 2009). These physiological shifts likely exert additional energetic costs on prey species and may explain why some prey grow less efficiently under predation risk (Trussell et al. 2006b, 2008).

To date, only a few studies have examined the genetic responses of organisms to predation risk. These studies were done on planktonic crustaceans (Pauwels et al. 2005; Schwarzenberger et al. 2009; Miyakawa et al. 2010; Spanier et al. 2010), tadpoles (Mori et al. 2009), guppies (Fraser et al. 2011), three-spined sticklebacks (Sanogo et al. 2011), and goldfish (Kagawa and Mugiya 2002). Many earlier studies examining molecular responses to predation risk used methods similar to those used to study abiotic stresses such as thermal and oxidative stress, often focusing on expression of heat-shock proteins or antioxidant enzymes (Kagawa and Mugiya 2002; Pijanowska and Kloc 2004; Pauwels et al. 2005; Slos and Stoks 2008). But later studies, employing high-throughput tools such as microarrays or transcriptomics, have shown few similarities in how species change gene expression in response to predation risk, which contrasts with well-established gene expression patterns during thermal stress (Mori et al. 2009; Fraser et al. 2011). Consequently, it is difficult to conclude from research to date whether predation stress triggers similar transcriptomic responses across many species—as heat stress does—or whether each species mounts a unique type of genetic response to its predators.

Here, we examine the genetic responses of the intertidal snail Nucella lapillus to both thermal stress and predation risk. Nucella lapillus sits in the middle of a three-level food chain, between its predator (the crab Carcinus maenas) and prey (the mussel Mytilus edulis and the barnacle Semibalanus balanoides). In this system, waterborne cues from C. maenas induce
decreased feeding, lower growth rates, and thicker shells in *N. lapillus* (Stickle *et al.* 1985; Palmer 1990; Trussell *et al.* 2003, 2006b); in turn, reductions in feeding rates can produce strong cascading indirect effects in the resident community (Trussell *et al.* 2003). Past work has also documented the effects of thermal stress on the snail’s color polymorphisms (Etter 1988), population structure (Chu *et al.* 2014), and protein expression (Gardeström *et al.* 2007). Using RNA-seq, we sought to further understand the genetic responses to a well-characterized abiotic stress (thermal stress) and a less-understood biotic stress (predation risk) within this well-studied intertidal food chain. In addition, we sought to uncover the potential overlap between these genetic responses to better understand how the interactive effects of thermal stress and predation risk may influence *N. lapillus*. Although thermal stress and predation risk often have similar organismal and ecological effects—e.g., decreased foraging and lower metabolic efficiency—we found that *N. lapillus*’s genetic responses to these factors were markedly different. The snail responded to thermal stress in a manner similar to other species, but we found few significant changes in gene expression in response to predation risk. In the context of past research, our findings suggest that genetic responses to biotic stresses, such as predation risk, may be more complex and less uniform across species than genetic responses to abiotic stresses, such as thermal stress.

METHODS

To examine the genetic responses of *N. lapillus* to thermal stress and predation risk, we exposed snails to three treatments: control conditions (no stress), risk cues from the predatory green crab *C. maenas* (predation risk), and elevated temperature (thermal stress). In June 2010, we collected snails from Nahant, MA, near Northeastern University’s Marine Science Center, where we
performed our experiments. First, snails were acclimated for almost two months in aquaria with an ambient supply of seawater from the Marine Science Center’s flow-through system and a steady supply of mussel prey (*M. edulis*). During the acclimation period, the snails were not directly exposed to crab risk cues beyond any trace cues that may have come in from the sea water system. Second, snails were placed in experimental mesocosms for a total of 17 days (during August and September 2010). Third, all experimental snails were flash-frozen in liquid nitrogen for genetic processing.

Each mesocosm had an independent water supply and a population of 30 mussels as prey, which was replenished every 6 days. Three control-treatment snails were kept at ambient temperature (15.75 ± 1.1 °C [mean ± 1 standard deviation], total range 12.1 – 20.3 °C) with an ambient supply of seawater from the Marine Science Center’s flow-through system. For our predation risk treatment, four snails were kept at ambient temperature, but throughout the 17-day experimental period, their water supply first passed through a chamber containing a green crab (*C. maenas*) feeding on *N. lapillus* to simulate predation risk, as in Trussell *et al.* (2006b). For our thermal stress treatment, two snails were kept in mesocosms at ambient temperature without crabs and with an ambient supply of seawater. These snails were removed from the mesocosms, brought to an internal body temperature of 33 °C under a heat lamp over a period of 4.5 hours at a rate of 1.8 °C min⁻¹, and finally placed back in ambient-temperature mesocosms for a 2-hour recovery period before we flash-froze them for RNA-seq.

We began RNA-seq library preparation by homogenizing at total of 25 mg of tissue from each snail’s head, foot, and mantle tissue in TRI Reagent. We extracted total RNA following the manufacturer’s protocol and quantified total RNA using an Agilent Bioanalyzer and an RNA 6000 Pico Chip (see Figure S1). We used only samples that had an RNA integrity number (RIN)
higher than 7. We then extracted mRNA by poly A+ selection using Dynabeads Oligo(dT) from Life Technologies. We prepared unstranded Illumina mRNA-seq libraries as in Craig *et al.* (2008), with the following modifications: we used fragmentase (NEB) to fragment the cDNA libraries, we size-selected for cDNA fragments ~250 base pairs in length, and we used custom 4-base-pair barcodes for each individual. We also used random primers during first-strand synthesis to avoid 3’ bias from Oligo(dT) primers. We quantified our final libraries using a Bioanalyzer DNA 1000 chip and sequenced them on an Illumina GAIIx using single-end, 50-base-pair reads.

To identify differentially expressed genes from our Illumina sequence data, we first used custom Perl scripts to filter sequence output to remove sequence reads having a Phred Quality score less than 30, more than one ambiguous nucleotide, or Illumina adapter sequences. We also filtered these sequence reads for rRNA contamination using the National Center for Biotechnology Information’s (NCBI) metazoan dataset and Bowtie v 0.12.7 (Langmead *et al.* 2009), applying default parameters. To assemble our RNA sequences into contigs—each representing a putative mRNA transcript—we used Trinity with default parameters, except that we set the path-reinforcement distance to 85 to account for potential polyploidy (Grabherr *et al.* 2011). We annotated the assembled transcriptome with Blastx v 2.2.27+ against the UniProtKB Swiss-Prot database, using the BLOSUM50 substitution matrix and an e-value cutoff of 10^{-5}. We used the relatively permissive BLOSUM50 matrix because of the scarcity of genetic data for molluscs. We used Bowtie v 0.12.7 to map RNA-seq reads from each individual snail to the annotated transcriptome and used Express to quantify for each snail the number of reads mapping to each individual assembled transcript (Langmead *et al.* 2009; Roberts and Pachter 2013). The software package eXpress did not detect any significant 3’ bias because of poly A+ selection (Dryad, express files). We analyzed differential expression using the DESeq2 package in R v
3.0.2, using the default adjusted P-value cutoff of 0.1 (Anders and Huber 2010). We also tested
P-value cutoffs of 0.05, 0.2, and 0.3. At a cutoff of 0.05, there were no differentially expressed
transcripts in the snails exposed to predation risk, and at 0.2 and 0.3 there were no additional
differentially expressed transcripts beyond those identified by the default P-value cutoff of 0.1.
Default independent filtering during DESeq2 analysis filtered out transcripts unlikely to be
differentially expressed using the mean of normalized counts as a filter statistic (Anders and
Huber 2010). We plotted biological processes associated with differentially expressed genes
according to their functional similarity using SimRel (Schlicker et al. 2006) and REVIGO (Supek
et al. 2011), setting the allowed similarity to 0.7 and querying the UniProt database.

RESULTS

Our RNA-seq analysis produced a total of 42,079,889 single-end, 50-base-pair reads after quality
filtering. Each individual was represented by 1,324,128 to 7,037,731 reads (Table S1). Using
pooled reads from all individuals, we assembled a 44.2-megabase transcriptome of 90,674
transcripts with an N50 statistic of 413, meaning that over 50 percent of transcripts were longer
than 413 nucleotides (Table S2); 20,922 of the transcripts (23%) annotated to a known protein-
coding gene.

Our DESeq2 analyses identified 141 transcripts that were differentially expressed in snails
exposed to elevated temperature versus snails kept at ambient temperature (Figure 1), and 29 of
those differentially expressed transcripts annotated to 26 known protein-coding genes (Table 1,
Figure 2). Of the 141 transcripts differentially expressed in snails exposed to elevated
temperature, 135 of them were upregulated and 6 were downregulated. The upregulated genes
included six heat-shock proteins; an additional protein chaperone (BAG family regulator 5, which
activates heat-shock protein 70); as well as genes mediating immune defenses (myeloperoxidase), inflammation (acyloxyacyl hydrolase), apoptosis (baculoviral IAP repeat-containing protein 2, BAG family regulator 5, myeloperoxidase, hemocyte protein-glutamine gamma-glutamyltransferase), oxidation stress (peroxidase), and metabolism (acyloxyacyl hydrolase, acidic phospholipase A2 PA4) (Table 1, Figure 2). The most strongly upregulated genes were for heat-shock 70 kDa protein cognate 1 and DNAJ homolog subfamily B member 4 (also known as heat-shock protein 40), both of which operate as molecular chaperones during stress (Feder and Hofmann 1999; Borges et al. 2005). None of the downregulated transcripts mapped to a protein-coding gene. In sum, the most significantly upregulated genes were associated with stress response, protein folding, metabolism, and inflammatory response (Gene Ontology Consortium, http://www.geneontology.org; Figure 2).

In contrast, our DESeq analyses identified only three differentially expressed transcripts in snails exposed to predation risk (Figure 1), and none of these three were differentially expressed in snails exposed to elevated temperature. Of the three differentially expressed transcripts induced by predation risk, one was upregulated and two were downregulated. The upregulated transcript did not annotate to a known gene and, from raw read counts, appears to have been differentially expressed in only one snail (Grubbs’ test, $M = 17.25$, $SD = 23.23$, $P < 0.05$; Supplementary File 2). The two downregulated transcripts both annotated to saxiphilin, a toxin-binding protein involved in iron transport (Morabito and Moczydlowski 1994; Negri and Llewellyn 1998; Figure 2; Table 1).

DISCUSSION

New, next-generation sequencing technologies are enabling transcriptomic analysis with much
greater depth, detail, and precision than before (Mardis 2008). Compared with a previously
published transcriptome used to study *N. lapillus*’s response to tributyltin, a pollutant that acts as
an endocrine disrupter (Pascoal *et al.* 2013), our transcriptome assembly was both larger and
more annotated. The previous Roche 454-based transcriptome assembled using Roche 454’s
Newbler assembly software was approximately one-third the size of our assembly, with a lower
annotation rate of approximately 2.5% (Pascoal *et al.* 2013), compared with our annotation rate of
23.1%. These differences reflect both the increasing throughput of next-generation sequencing
platforms and the growing power of short-read assembly algorithms like those used in Trinity
(Grabherr *et al.* 2011).

Our RNA-seq analyses revealed distinct gene expression responses to thermal stress and
predation risk among the *N. lapillus* in our experiments. Despite similar potential effects exerted
by both these stresses—such as decreased feeding and growth efficiency—the snails evidently
compensated for each stress via independent processes. The difference between the genetic
responses to thermal stress and predation risk suggests that these stressors could be additive in
their impact on *N. lapillus*, as each stress appeared to trigger separate genetic pathways.

We found that *N. lapillus* had a genetic response to thermal stress similar to those of other
intertidal organisms (Lang *et al.* 2009; Place *et al.* 2012), involving the upregulation of genes
associated with multiple heat-shock proteins, apoptosis, and other molecular chaperones. Heat-
shock proteins are a well-described set of proteins mediating cellular damage, which are often
upregulated in response to elevated temperature and other environmental stresses, such as
oxidation, and these proteins occur in all three phylogenetic domains (Feder and Hofmann 1999;
Kregel 2002). The magnitude of *N. lapillus*’s response, including upregulating heat-shock 70
protein by more than 23 times, likely reflects the extreme temperature variation that the species
experiences in the intertidal zone (Somero 2002). We also observed a strong upregulation (by 8.69 times) of acyloxyacyl hydrolase, which is associated with inflammation responses (Hagen et al. 1991; Cody et al. 1997) and lipid metabolism (Munford and Hunter 1992). These differentially expressed genes show that when exposed to high temperatures, *N. lapillus* mounts a significant response, stabilizing cellular and molecular machinery and potentially altering metabolic pathways to meet additional energetic needs. These results align with thermal-stress experiments in other species, which often show similar shifts in gene expression (Lang et al. 2009; Connor and Gracey 2011; Place et al. 2012).

In contrast to the response we observed to thermal stress, we found a less pronounced response to predation risk. The single upregulated transcript appears to have been upregulated in only one of the snails exposed to predation risk (Supplementary File 2). The two downregulated transcripts annotated to saxiphilin, a protein that binds saxotoxin, a well-known paralytic shellfish toxin (Negri and Llewellyn 1998). It is unclear what role this protein might play in a response to predation risk. In addition, it appears that six related genes that were downregulated in response to thermal stress appear to be similarly downregulated in response to predation risk (Dryad, read count table: transcripts comp34986_c0_seq[1, 4-8]), although DESeq2 did not identify these genes as statistically significant. These genes are unannotated and merit further investigation because of their potential role in responses to both thermal stress and predation risk.

We were surprised that few genes were differentially expressed in response to predation risk, given that such risk has been shown to induce strong changes in the snail’s behavior [e.g., predator avoidance (Matassa and Trussell 2011)], morphology [e.g., shell thickening (Palmer 1990)], and metabolism [e.g., reduced growth efficiency (Trussell et al. 2006b)]. It may be that our sampling missed the temporal scale at which predation risk triggers changes in gene
expression: perhaps the snails had not yet responded to predator cues or they had become acclimated or desensitized to them during the experiment. Such a sampling effect would appear unlikely, however, given that (1) the ecological effects of predation risk in N. lapillus persist at high levels for weeks or longer (Matassa and Trussell 2011); (2) snails were acclimated in crab-free mesocosms before all experiments, thus minimizing potential preexperimental exposure to predator cues; and we sampled during a peak period of predation risk effects documented in this system (Trussell et al. 2006a, 2006b). Furthermore, other studies have detected significant physiological effects after as little as 12 days of incubation (Matassa and Trussell 2011), and snails that were maintained in parallel with this experiment (from the same collection and acclimation period, used in a different study) showed significant decreased growth efficiency and foraging behavior in responses to crab cues during our 17-day incubation period (Miller et al. 2014). It is also possible that N. lapillus’s genetic response to predation risk is tissue specific, so by pooling tissue types, we might have missed a response.

Finally, our depth of sequencing may not have been sufficient to capture a response to predation risk, particularly if changes in gene expression were modest. This possibility could have been exacerbated by DESeq2’s analysis pipeline, which filters out genes if the mean of normalized counts is below a given threshold (Anders and Huber 2010). By filtering out such low-expression genes, DESeq2 reduces the probability of false positives and increases statistical power (Bourgon et al. 2010), but it also increase the chance of false negatives for genes expressed at very low levels. Our sequencing depth may also not have been sufficient to cover N. lapillus’s genome, which is estimated to be approximately 2.6 gigabases (Pascoe et al. 2004). This species’ genome has not been sequenced, and mapping to a de novo transcriptome assembly is inherently less efficient than mapping to a sequenced genome.
Our results suggest that when applying transcriptomics to study complex ecological phenomena, one must keep in mind the limitations of RNA-seq and take into account the experimental design and sequencing depth used. The Encyclopedia of DNA Elements (ENCODE) Consortium’s guidelines for RNA-seq studies suggest a minimum of two biological replicates and 30 million paired-end reads per sample in human studies (https://www.encodeproject.org/), although some research has reported diminishing returns after 10 million reads (Liu et al. 2013). Indeed, quite a few recent studies do not meet ENCODE’s read depth standards, in part, because of the sequencing costs. Such variations highlight the importance of experimental context when interpreting RNA-seq results, which are comparative.

In our study, the detection of few differentially expressed genes in response to predation risk likely suggests that responding to predation involves more subtle changes in gene expression than responding to thermal stress. More detailed sampling and sequencing may be needed to uncover these processes. As sequencing technology and RNA-seq methodologies continue to mature, the sensitivity of these tools will no doubt grow and costs decrease, which should enable us to find and clarify phenomena we might have missed at first.

Even so, if more frequent sampling, tissue separation, or greater sequencing depth were necessary to identify differentially expressed genes in response to predation risk, these factors alone would not likely explain the comparatively less extensive genetic response we found to predation risk than to thermal stress. This notable difference is consistent with the idea that elevated temperature poses a more critical threat to *N. lapillus* than predation and that the extreme daily and seasonal thermal fluctuations of the intertidal zone are the primary drivers of stress on rocky shores (Helmuth and Hofmann 2001; Somero 2002). Even though the ecological impacts of moderate thermal stress and predation risk can be similar in magnitude (Miller et al. 2014), the
intensity of thermal stress in intertidal habitats may require a more extensive genetic response to survive periods of high temperature. In contrast, the spatial distribution and temporal scales of predator risk vary greatly (Turner and Montgomery 2003) and may require fewer genetic changes.

N. lapillus’s relatively modest genetic response to predation risk might also involve more moderate changes to gene expression and complex shifts in behavior and physiology than its response to thermal stress. Although mitigating thermal stress requires upregulating molecular chaperones to maintain crucial cellular processes, avoiding predation involves hiding (Matassa and Trussell 2011), increased shell production (Palmer 1990), and changes in metabolism (Trussell et al. 2006b) in *N. lapillus*, and these plastic responses likely involve a diverse complement of genes. Future work with deeper sequencing, more sampling over multiple time points, and sampling of individual tissue types may improve our ability to detect changes in gene expression associated with behavioral responses to predation risk in *N. lapillus* and other species.

In addition, when considered within the context of previous research on predator-induced gene expression, our data suggest that the genetic response to predation risk might be less uniform across species than the response to thermal stress. Thermal stress is often considered one of the most fundamental stresses an organism can confront, and studies of genetic responses to thermal stress from species from all three phylogenetic domains show a similar pattern of upregulating heat-shock proteins and other chaperone proteins (Feder and Hofmann 1999). Although past studies using single- or multiple-gene techniques found that some prey species upregulate heat-shock proteins in response to predators (Kagawa and Mugiya 2002; Pijanowska and Kloc 2004; Slos and Stoks 2008), more recent studies using microarrays and transcriptomics in other species found that the presence of predators does not always trigger the upregulation of
stress-mediating genes associated with thermal or oxidation stress. These studies found different responses to predation risk for each organism (Mori et al. 2009; Miyakawa et al. 2010; Fraser et al. 2011). Nishimura and colleagues, for example, have studied predator-induced phenotypes in the tadpole of Rana pirica, which can produce a “bulgy” morphology that prevents predation by larval salamanders (Kishida et al. 2007). Using microarrays, the researchers found that bulgy-morph tadpoles differentially expressed a number of genes mediating cell adhesion and structure, including the upregulation of NADH dehydrogenase, aldehyde dehydrogenase, and uromodulin-like genes and downregulation of keratin-related genes (Mori et al. 2009). Their results suggest that changes in tadpole gene expression were specifically linked to the pronounced phenotypic changes preventing predation. Besides our study, only one other has used high-throughput transcriptomic techniques to assess genetic responses to predation risk. This study examined a species of guppy (Poecilia reticulata) and found that two genes encoding cerebellin proteins were the most upregulated in response to cues from a fish predator (Fraser et al. 2011). These studies indicate that not all species upregulate typical stress proteins in response to predation risk, and particular responses for each species may reflect the diversity of behavioral and physiological strategies taken by different organisms to reduce their vulnerability to predation. A better understanding of the genetic underpinnings of complex biotic stresses will require high-throughput transcriptomic approaches to identify specialized responses, because such responses are likely to be missed by lower-throughput analyses.

CONCLUSIONS

Using RNA-seq analyses, we found notably different genetic responses to thermal stress and predation risk in N. lapillus. Thermal stress invoked vigorous upregulation of many stress-related
genes, similar to responses in other intertidal organisms. In contrast, predation risk triggered a much less marked response. These results suggest that thermal stress and predation risk may present fundamentally different challenges to *N. lapillus*. In the context of previous studies, our findings suggest that genetic responses to biotic stresses, such as the risk of predation, may be less uniform than genetic responses to abiotic stresses, such as thermal stress, and that further studies using transcriptomic tools may further uncover unique and subtle genetic responses mounted by different species to avoid predation.

ACKNOWLEDGMENTS

Funding was generously provided by National Science Foundation grants OCE-0727628 to GCT, OCE-0848345 to SVV, and OCE-0963010 to the Marine Science Center as part of the Academic Research Infrastructure Recovery and Reinvestment Program. We thank Ellen W. Chu for comments on the manuscript. For scripts and more information, please visit http://nathanieldavidchu.wordpress.com.

DATA ACCESSIBILITY

- RNA-seq raw sequence reads: NCBI SRA-SRX357400
- Transcriptome assembly: Dryad repository doi: 10.5061/dryad.610dd
- Express files will be deposited in the Dryad repository

AUTHOR CONTRIBUTIONS

LPM, GCT, and SVV conceived and designed the research. LPM prepared sequencing libraries. NDC and STK analyzed data. NDC wrote the first draft, and LPM, GCT, and SVV contributed
significantly to revisions.

TABLES

Table 1. Gene annotations of differentially expressed transcripts in snails exposed to elevated temperature (thermal stress) and predation risk (predation risk). *n* values in parentheses indicate that multiple differentially expressed transcripts annotated to this gene, and in these cases, we report the range of *P*-values found.

<table>
<thead>
<tr>
<th>Gene transcript annotation</th>
<th>Uniprot ID</th>
<th>log$_2$ fold change</th>
<th>Adjusted P-value</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat-shock 70 kDa protein cognate 1</td>
<td>P02826</td>
<td>4.53</td>
<td>3.82e-09</td>
<td>Heat-shock proteins act as molecular chaperones during heat and other stresses (Feder and Hoffmann 1999).</td>
</tr>
<tr>
<td>Heat-shock 70 kDa protein 16</td>
<td>Q9SAB1</td>
<td>2.73</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Heat-shock cognate 70 kDa protein 1*</td>
<td>P36415</td>
<td>2.59</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>Heat-shock protein 83</td>
<td>O16087</td>
<td>2.34</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>78 kDa glucose-regulated protein (n = 3)</td>
<td>P34935</td>
<td>2.69 – 2.70</td>
<td>0.005</td>
<td>Belongs to the heat-shock protein 70 family; involved in</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Accession</td>
<td>Value</td>
<td>p-value</td>
<td>Function Description</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>BAG family molecular chaperone regulator 5 (nucleotide exchanger for HSP70)</td>
<td>Q5QJC9</td>
<td>2.82</td>
<td>0.004</td>
<td>Acts as a protein chaperone and activates heat-shock proteins (Kalia et al. 2004).</td>
</tr>
<tr>
<td>DnaJ homolog subfamily B member 4 (probable chaperone) (n = 2)</td>
<td>Q9D832</td>
<td>4.40–4.44</td>
<td>3.82e-09</td>
<td>Acts as a protein chaperone, and is also known as heat-shock protein 40 (Borges et al. 2005).</td>
</tr>
<tr>
<td>Baculoviral IAP repeat-containing protein 2 (n = 2)</td>
<td>Q62210</td>
<td>2.56–2.61</td>
<td>0.015–0.018</td>
<td>Mediates cellular apoptosis (Rothe et al. 1995).</td>
</tr>
<tr>
<td>Myeloperoxidase</td>
<td>P05164</td>
<td>2.54</td>
<td>0.020</td>
<td>Involved in immune defense (Nauseef et al. 1996), apoptosis regulation (Wagner et al. 2000), and inflammation responses (Hashinka et al. 1988).</td>
</tr>
<tr>
<td>Acyloxyacyl hydrolase</td>
<td>P28039</td>
<td>3.12</td>
<td>0.001</td>
<td>Involved in inflammation responses and lipid</td>
</tr>
<tr>
<td>Peroxidase (n = 2)</td>
<td>Q01603</td>
<td>2.47–2.49</td>
<td>0.027–0.029</td>
<td>Breaks down free-radical products of inefficient cellular metabolism (Ng et al. 1992).</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>Hemocyte protein-glutamine gamma-glutamyltransferase (protein synthesis catalyst)</td>
<td>Q05187</td>
<td>2.13</td>
<td>0.098</td>
<td>Catalyzes peptide cross-linking and potentially plays a role in programmed cell death (Tokunaga et al. 1993).</td>
</tr>
<tr>
<td>Prestin</td>
<td>Q9JKQ2</td>
<td>2.27</td>
<td>0.085</td>
<td>Acts as a motor protein and helps regulate cell shape (Zheng et al. 2000).</td>
</tr>
<tr>
<td>Acidic phospholipase A2 PA4</td>
<td>P80003</td>
<td>2.36</td>
<td>0.055</td>
<td>Involved in lipid metabolism and host defense (Dennis et al. 1991).</td>
</tr>
<tr>
<td>Patched domain-containing protein 3 (sperm development)</td>
<td>Q0EEE2</td>
<td>2.66</td>
<td>0.011</td>
<td>Potentially regulates hedgehog signaling in male germ cells (Fan et al. 2007).</td>
</tr>
<tr>
<td>IgE-binding protein ($n = 2$)</td>
<td>P03975</td>
<td>2.42–2.50</td>
<td>0.021–0.032</td>
<td>Mediates immunoglobulin (antibody) responses (Ishizaka 1984).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Retrovirus-related Pol polyprotein from transposon 412 ($n = 3$)</td>
<td>P10394</td>
<td>2.30–2.73</td>
<td>0.007–0.065</td>
<td>Acts as a transposable element (Yuki et al. 1986).</td>
</tr>
<tr>
<td>RNA-directed DNA polymerase from mobile element jockey</td>
<td>P21329</td>
<td>2.44</td>
<td>0.035</td>
<td>Acts as a mobile DNA element (Mizrokhi and Mazo 1990).</td>
</tr>
<tr>
<td>Predation risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saxiphilin ($n = 2$)</td>
<td>P31226</td>
<td>-2.78–2.74</td>
<td>0.093</td>
<td>Binds saxotoxin, a toxin found in shellfish (Negri and Llewellyn 1998).</td>
</tr>
</tbody>
</table>

*Heat-shock cognate 70 kDa protein 1 was the second most significant blast hit (e-value = 6e-15). The most significant Blast hit was a heat-shock 70 protein from chloroplast membranes.

FIGURE LEGENDS

Figure 1. Differential gene expression in (a) snails exposed to elevated temperature versus control
snails and (b) snails exposed to predation risk versus control snails. Each point in these volcano plots represents a gene transcript; red dots are differentially expressed transcripts that had an adjusted P-value of < 0.1.

Figure 2. Biological processes associated with differentially expressed transcripts, as defined by the Gene Ontology project. Red circles represent genes differentially expressed in snails exposed to elevated temperatures, and blue circles represent those from snails exposed to predation risk. Circle size is proportional to the absolute value of the \log_{10} of the reported DESeq2 P-value, with larger circles indicating a more statistically significant differentially expressed transcript. Biological processes are plotted according to their functional similarity using the Sim_{Rel} measurement (Schlicker et al. 2006) and REVIGO (Supek et al. 2011).
REFERENCES

Miller LP, Matassa CM, Trussell GC (2014) Climate change enhances the negative effects of predation risk on an intermediate consumer. *Global Change Biology*.

Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing

Spanier KI, Leese F, Mayer C *et al.* (2010) Predator-induced defences in *Daphnia pulex*: selection and evaluation of internal reference genes for gene expression studies with real-
time PCR. *BMC Molecular Biology*, **11**, 50.

Table S1. Illumina read representation of individual snails.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Filtered Reads</th>
<th>Mapping Reads</th>
<th>Annotated, Mapping Reads</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_006</td>
<td>6,020,717</td>
<td>3,432,767</td>
<td>718,576</td>
</tr>
<tr>
<td>AC_008</td>
<td>7,037,731</td>
<td>4,289,831</td>
<td>893,364</td>
</tr>
<tr>
<td>AC_43</td>
<td>1,324,128</td>
<td>702,278</td>
<td>210,358</td>
</tr>
<tr>
<td>AC_42</td>
<td>1,857,540</td>
<td>883,589</td>
<td>273,892</td>
</tr>
<tr>
<td>ANC_003</td>
<td>5,782,131</td>
<td>3,568,060</td>
<td>715,620</td>
</tr>
<tr>
<td>ANC_34</td>
<td>5,577,022</td>
<td>2,594,866</td>
<td>927,301</td>
</tr>
<tr>
<td>ANC_41</td>
<td>4,575,798</td>
<td>2,293,349</td>
<td>911,726</td>
</tr>
<tr>
<td>HNC_31</td>
<td>3,677,763</td>
<td>1,891,007</td>
<td>657,755</td>
</tr>
<tr>
<td>HNC_37</td>
<td>6,227,059</td>
<td>3,002,492</td>
<td>941,372</td>
</tr>
</tbody>
</table>

Table S2. *Nucella lapillus* transcriptome assembly metrics.

<table>
<thead>
<tr>
<th>Total base length of assembly</th>
<th>Contigs</th>
<th>Annotated contigs</th>
</tr>
</thead>
<tbody>
<tr>
<td>44,210,724</td>
<td>90,674</td>
<td>20,922</td>
</tr>
</tbody>
</table>