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Abstract

In this paper, we study how the topology of the International Trade Network (ITN) changes

in geographical space, and along time. We employ geographical distance between countries in

the world to filter the links in the ITN, building a sequence of subnetworks, each one featuring

trade links occurring at similar distance. We then test if the assortativity and clustering of

ITN subnetworks changes as distance increases, and we find that this is indeed the case:

distance strongly impacts, in a non-linear way, the topology of the ITN. We show that the

ITN is disassortative at long distances, while it is assortative at short ones. Similarly, the

main determinant of the overall high-ITN clustering level are triangular trade triples between

geographically close countries. This means that trade partnership choices and trade patterns

are highly differentiated over different distance ranges, even after controlling for the economic

size and income per capita of trading partners, and it is persistent over time. This evidence

has relevant implications for the non-linear evolution of globalization.

Keywords: international trade, network analysis, distance

1 Introduction

Overcoming a relatively long neglect, geography and distance have re-gained

momentum in international trade analysis. After a strand of literature in the 1990s

showing how the geographical position of countries could affect specialization,

agglomeration of production, and the gains from economic integration (Krugman,

1998; Fujita and Krugman, 2004), the recent international trade models displaying

heterogeneous productivities (Eaton and Kortum, 2002; Melitz, 2003) assign a

fundamental role to distance. In both types of literature, distance matters, especially

because of the existence of non-negligible international trade costs (Anderson and
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2 A. Abbate et al.

Van Wincoop, 2004; Krugman and Venables, 1995). The characteristics of these

trade costs are therefore crucial in determining the models’ results. Also, in the

empirical analysis of trade flows, the overwhelming use of the gravity equation1 as

the preferred functional form in the prediction of the volume of bilateral trade flows

is emphasizing once again the persistent role of distance in international exchanges.2

Nevertheless, especially in applied analyses, the concept of distance is still essen-

tially considered as an absolute, bilateral concept (i.e., as an individual characteristic

of each single country i with respect to any other country j). Even if the inclusion of

concepts such as market potential (Head and Mayer, 2010), remoteness (Wei, 1996),

or multilateral resistance (Anderson and van Wincoop, 2003) in international trade

analysis encouraged researchers to move from the two-country-world of international

trade theory and the bilateral focus of trade empirics to a more global analysis,

where the structure of the links among all countries in influencing countries’ dyadic

relations is taken into account,3 the practical treatment of the issue through country

fixed-effects in panel data (Feenstra, 2002; Redding and Venables, 2004) makes the

truly structural dimension of multilateral resistance still largely under-explored.

In this paper, we want to explicitly address the issue of distance in a multidi-

mensional system, so to better understand how geographical distance and the trade

costs connected to it can influence the choice and the number of trade partners

of each country, shaping the evolution of globalization and generating a possible

hierarchical structure of trade relations. Even if certainly trade costs are not only

determined by geographical distance, this is still a major barrier to trade according

to recent estimates (Arvis et al., 2016). Therefore, we will use a network approach to

study international trade flows between countries, taking geography explicitly into

account. Network analysis of international trade (see Fagiolo, 2015, for a recent

review of the literature) has started to uncover the properties of the web of trade

flows by focusing precisely on the structural, multilateral aspects of international

trade relations (Fagiolo et al., 2009; De Benedictis and Tajoli, 2011; De Benedictis

et al., 2014). This approach describes international trade flows using graph-theoretic

structures where countries (nodes) are linked by arcs or edges (possibly weighted)

representing import–export relationships between countries. The literature hints to

the existence of interesting statistical regularities in the topology of trade networks,

such as the disassortative nature of the network, (i.e., the fact that highly-connected

countries tend to be linked to countries which are not well-connected), or the

relatively high level of clustering (i.e., a high probability that any two trade partners

of a country are themselves trade partners).

There are a number of implications related to these findings. First of all, the

uneven structure of the network of international trade and the strongly non-normal

1 See Disdier and Head (2008) for a metaanalysis of the empirical literature on the gravity model
in international trade and the role of distance, Santos Silva and Tenreyro (2006) for the possible
implication of the inclusion of distance in a log form, and De Benedictis and Taglioni (2011);
Anderson (2011) and Head and Mayer (2014) for recent overviews of the gravity model.

2 The economic relevance of space, i.e., the cost associated to physical distance, has also influenced
macroeconomists in singling it out as a fundamental explanation of discrepancies between canonical
models and empirical evidence (Obstfeld and Rogoff, 2001).

3 The literature on “third country effects” is still very sparse. See Baltagi et al. (2007) for an application to
Foreign Direct Investments, and Egger and Larch (2008) and Chen and Joshi (2010) for an application
to Regional Trade Agreements (RTAs).
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Distance-varying assortativity and clustering 3

distribution of countries in terms of connectivity to the world trading system point

to the fact that countries are very heterogeneous in their choice of trade partners,

implying that in trade models the concept of an “average country” presents severe

limits (De Benedictis and Tajoli, 2011). Furthermore, the network structure affects

directly the distribution of the gains from trade by affecting countries’ market power

(Jackson, 2010), the transmission of economic shocks and economic growth (Kali

and Reyes, 2007; Kali et al., 2007), the efficiency and costs of the transport system,

the heterogeneous effect of Preferential Trade Agreements (Eicher and Henn, 2011),

and the stability of the entire trade structure.

These findings apply to the entire world trading system, without assigning a

role to geography, as the network of trade flows has never been embedded in a

geographical space. No attempt has been made to link the topological distance

among countries to its geographical counterpart.4 In this paper, we begin to fill

this gap by including geographical space in a network analysis of international

trade flows, because, as suggested by a large body of literature, geography can play

a relevant role in globalization patterns. To do so, we employ the geographical

distance between countries to filter the international trade network (ITN) and build

subnetworks of countries located within a given geographical range. We then test if

the topological properties of the ITN vary as the distance range increases.

The short answer we get is: yes. We find that the effect of distance on trade

networks is strongly non-linear. Many of the properties observed at the aggregate

level (i.e., without considering distance) are not robust to a geographical breakdown.

For example, focusing on assortativity (the tendency of the likes to stick together)

and clustering (the tendency of one’s partners to be partners among themselves),

the network is disassortative at long distances, while it is assortative at short ones,

the switch occurring at a distance of approximately 9,000 km. A similar finding

applies to clustering: short-distance countries-triples are the major contributors to

the strong level of overall international clustering.

The main implication of such a change in the topological properties is that the

drivers of trade at long and short distance can be different, and we should expect

different international trade patterns between neighboring countries and countries

that are far apart, as it is suggested by Eaton and Kortum (2002) and Hillberry and

Hummels (2008). The difference in the assortativity mix at various distances suggests

that distance-related trade costs indeed play a role, and the non-linearity of effects

can be interpreted as a change in the relative weight of the fixed (e.g., sunk costs

à la Melitz, 2013) and variable costs (e.g., “iceberg” type trade costs) component.

By repeating this exercise over time, we show that this evidence is persistent from

the year 1970 to the year 2000, and that it remains consistent even after explicitly

conditioning the analysis to the economic size (e.g., GDP) and GDP per capita of

countries involved in trade. This confirms an important insight for the analysis of

trade networks and international trade in general: international trade flows are not

isomorphic along distance.

4 This is also the case for network analysis in general. There are however notable exceptions in the area
of geography, urban systems, and transport analysis. See Barthelemy (2011) for a review of the issue,
and Wilson (2000) and Haggett and Chorley (1969).
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4 A. Abbate et al.

The rest of the paper is organized as follows. In Section 2, we review the literature

dealing with geographical distance and trade models. Section 3 discusses the main

findings of network-related literature on trade. In Section 4, we describe the data

used in our analysis and the methodology used. Section 5 presents our main results.

Finally, Section 6 concludes.

2 Distance, trade costs, and the extent of globalization

Distance matters in international trade. This is so whenever the movements of goods

and services across space implies some costs. Econometric estimates of the constant

elasticity of trade to geographical distance provide a measure of the relevance of

those costs and their persistence over time (Brun et al., 2005), ranging within an

interval of −0.7−1.2 (Disdier and Head, 2008). This means that on average, all else

equal, countries twice apart show a bilateral volume of trade that is approximately

half the one of neighboring countries. There is a large theoretical and empirical

evidence showing that geographical distance is a proxy also for a number of other

important factors that hamper international trade (Anderson and Van Wincoop,

2004), often related to geography. Differences in language (Melitz and Toubal,

2014), trade policy (Egger and Larch, 2008), history (Eichengreen and Irwin, 1995),

and institutions enhance the cost of trade across geographical and cultural distance,

especially by increasing uncertainty and informational issues (see, for example,

De Groot et al., 2004, and the very recent work by Lendle et al., 2016).

In line with this evidence, the most recent trade models embody the idea that the

geographical distance between the country where goods and services are produced

and the country where they are sold and consumed has a negative effect on trade

flows between the two countries. There may be several reasons why this is the case.

Taking an extreme view, on the one hand, trade costs can operate proportionately

to distance, increasing variable costs or reducing the quantity of the exported goods

that reaches the foreign market, as in Samuelson’s iceberg trade-cost formulations.

On the other hand, trade costs can follow a Bernoulli process associated to the

acquisition of an export status by firms extending their activities from a purely

domestic context to an international one. In this case, distance acts as a fixed sunk

cost, that can be specific to the each foreign market or payed once-and-for-all

when the firm, having payed the fixed sunk trade cost, has acquired the knowledge

necessary to be active in any foreign market.5

The implications of such alternative views in terms of trade partnership and

trade flows among countries are clearly not the same. If trade costs are directly

proportional to distance, trade partnerships would expand radially around countries

and trade volumes would smoothly decrease with distance, conditional on the size of

the foreign market. Conversely, if trade costs are fixed entry costs, trade partnership

would be a more discontinuous process, and the selection of partners and trade

volumes would be somehow independent on the distance between the home and

foreign market.

5 See Redding (2011) for a review of the recent theoretical literature on heterogeneous firms and trade
and on the role of trade costs in this stream of research. The fundamental paper by Anderson and
Van Wincoop (2004) gives a comprehensive overview of the issue.
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Trade economists have dealt with this issue in terms of extensive margin and

intensive margin of trade (i.e., new trade links vs. increasing strength of pre-existing

trade links).6 The consensual piece of evidence is that distance operates mainly

through the extensive margin, as shown by Lawless (2010) and Bernard et al. (2007)

and the negative effect of distance strongly emerges only at the extensive margin.

The theoretical paper by Chaney (2008), along the lines of the literature on

heterogeneous firms that focuses on the micro foundation of the gravity equation

(see also Anderson and van Wincoop (2003), Melitz (2003), Eaton and Kortum

(2002), and Helpman et al. (2008)), reinforces the empirical evidence, showing that

fixed costs affect only the extensive margin of trade. In facts, in Lawless (2010), the

time-invariant variables that may influence bilateral trade, capturing the role played

by fixed cost (i.e., language, internal orography, infrastructure, and import barriers)

work through the extensive margin.

This evidence, distinguishing the role of distance between its effect on the extensive

and intensive margin, has an implicit echo in the different analyses of the ITN. The

notions of extensive and intensive margins, at the country level, can be easily

applied to network analysis. Generally speaking, at the country level the extensive

margin of trade is the change in the number of trade partners of a country over

time, either importers or exporters or both, which coincides with the change in the

number of the links of a country in the trade network. Conversely, the intensive

margin—conditional to a fixed number of partners—is associated with the change

of a country’s pre-existing trade flows, e.g., the sum of the pre-existing weights of

the links of a country.

The second issue that is worth discussing in the context of the gravity equation is

the way distance is included as a covariate of bilateral trade flows. As we mentioned

already, the cost of distance is in general interpreted as a fixed (sunk) cost or as a

variable cost, with different implications.

In principle, given the different nature of trade costs, there is no reason to believe

that distance should be related to trade in a (log)linear manner. As pointed out

by Bernard et al. (2007) and Hummels (2007) among others, transportation costs

can induce a selection among the goods that are sold in distant markets, and the

average value of exports could increase in distance precisely to compensate the

increase in trade costs. Even for a given distance, trade costs are much dependent on

the characteristics of specific goods, such as fragility, perishability, size, or weight.

In aggregate terms, trade costs would depend on trade composition and would be

country-specific, affected by country’s remoteness and sectoral specialization. Such

non-linearities are usually addressed empirically using a log-log specification.7 This

procedure can be however costly, de-facto removing all zero flows and generating

a selection in the data. The role played by fixed cost is identified only on those

6 The dimensions through which aggregate trade is typically split in margins are many. Just to fix ideas,
the extensive margin can be considered at the country level (new export markets or countries from
which imports are coming from); at the sectoral level (new product lines get activated in export or
import data, at the sectoral level); at the firm level (new firms enlarge their reference market beyond
national boundaries); or at the product level (multiproduct firms start selling new product varieties
abroad).

7 For an analysis of the implications of estimating the gravity model in a log-linear form with
heteroskedastic errors, see Santos Silva and Tenreyro (2006) and De Benedictis and Taglioni (2011)
for a survey of non-linear estimators in the context of the gravity model.
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6 A. Abbate et al.

flows that are able to cover those fixed cost and not on those that are not able to

afford it.

In some cases, the assumption of a (log)linear cost of space is substituted with

some ad hoc functions. In Eaton and Kortum (2002), the distance effect is associated

to six non-overlapping distance intervals: [0, 375); [375, 750); [750, 1,500); [1,500,

3,000); [3,000, 6,000); and [6,000, maximum], measured in miles. Anderson and

Yotov (2012) uses the same specification decomposing the distance effect into four

different elasticities corresponding to the four non-overlapping distance intervals: [0,

3,000); [3,000, 7000); [7,000, 10,000); [10,000, maximum], measured in kilometers. It

is amazing that neither one of the two papers explains why this stepwise functional

forms has been adopted. Hillberry and Hummels (2008) bring some illuminating

evidence on why the Eaton and Kortum (2002) specification might be ad hoc

but meaningful: there is an extraordinary difference between short and long-

distance trade. Using highly disaggregated data at the spatial and sectoral level

on manufacturers’ shipments within the United States, they find that the pattern of

shipments is strongly localized. Shipments within 5-digit zip codes, with a median

radius of only 4 miles, are 3 times larger than shipments outside the zip code. The

analysis shows that distance reduces aggregate trade values primarily by reducing

the number of commodities shipped and the number of establishments shipping. “

... Extensive margins are particularly important over very short distances.”

The analysis that will follow adds a complementary motive to the micro evidence

put forward by Hillberry and Hummels (2008), and brings support to the distinction

between short and long-distance trade; thus, giving a further support to the Eaton

and Kortum (2002) specification of the effect of distance on trade. More specifically,

we embed a multilateral perspective to international trade, based on network theory,

in an explicit geographic dimension, in order to ask whether the structure of

international trade is isomorphic across distance.

3 Complex networks and international trade

In the last years, there was an increasing surge of interest in applying a complex-

network approach to the study of international trade, as documentd in Fagiolo

(2015).8

The ITN, aka World-Trade Web (WTW) or World Trade Network (WTN), is

defined as the graph of import/export relationships between countries in a given

year t. The resulting graph, Gt = (Vt,Lt), where nt =| Vt | is the number of

countries constituting the vertices (or nodes) of the graph, and mt =| Lt | is

the number of existing directed trade links (or arcs), gives rise to network Nt =

(Vt,Lt,Pt,Wt)—where Pt is the vertex value function including the exogenous or

endogenous properties of vertices, and Wt is the line value function including the

exogenous or endogenous weights of links—which could be a binary (unweighted)

network, ∃Wt = At, where At is, for every year t, a n × n 0-1 matrix, if only the

8 See, for example, Li et al. (2003), Serrano and Boguñá (2003), Garlaschelli and Loffredo (2004),
Garlaschelli and Loffredo (2005), Reichardt and White (2007), Serrano et al. (2007), Bhattacharya
et al. (2008), Bhattacharya et al. (2007), Garlaschelli et al. (2007), Tzekina et al. (2008), Fagiolo et al.
(2008), Reyes et al. (2008), Fagiolo et al. (2009), De Benedictis and Tajoli (2011), and Chaney (2016).
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presence/absence of a positive trade flow is considered, or could be a weighted

network, ∃Wt �= At, if links have different intensities, according to, e.g., the value

of the bilateral trade flows.

A lot of effort has been recently put forward in uncovering the topological

properties of the ITN architecture, both at the aggregate and at the product-specific

level (see Fagiolo et al., 2010; Barigozzi et al., 2010, for a review of the main results).

As mentioned, understanding the topological properties of the ITN from a complex-

network perspective (Albert and Barabási, 2002; Dorogovtsev and Mendes, 2003),

and their evolution over time, is fundamentally important to study issues such as

economic globalization, the spreading of international crises, and the transmission

of economic shocks (Helliwell and Padmore, 1985; Artis et al., 2007; Forbes, 2002).

A network approach, by focusing on direct as well as indirect relationships between

countries, is able to single out the role of each countries in the complex web of world

trade interactions. This is a remarkable change with respect to traditional analyses.

Indeed, the standard approach to international-trade empirics employs statistics that

fully characterize the profile of a country in the system by referring mainly to its

bilateral-trade direct linkages. Whereas direct bilateral trade linkages are known to

be one of the most important channels of interaction between world countries (Krug-

man, 1995), recent studies show that they can only explain a small fraction of the

impact that an economic shock originating in a given country can have on another

one, which is not among its direct-trade partners (Abeysinghe and Forbes, 2005).

Along similar lines, Squartini et al. (2011a,b) show that knowledge of country-specific

indicators such a the number of trade partners, total imports or total exports (which

only take into account direct bilateral links in the ITN) is not enough in the weighted

ITN to characterize higher-order moments of the distribution of trade relationships,

involving, for example, the trade behavior of the partners of a given country, the

likelihood that any two trade partners of a vertex are themselves partners, etc.

In order to fully account for system-wide phenomena such as globalization and

crises diffusion, a more detailed knowledge of the local and global topological

properties of the network is therefore required. This means, in other words, acquiring

a better understanding of the presence and importance of trade paths connecting

any pair of non-direct trade partners and, more generally, of topological indicators

proxying the likelihood that economic shocks might be transmitted between any two

countries (Kali and Reyes, 2007). This, in turn, has been shown to help explaining

patterns of macroeconomic dynamics related to, e.g., growth and development (Kali

et al., 2007; Reyes et al., 2008).

The issue of assortativity is central in empirical studies of real-world networks.

More generally, one asks whether there exists any assortative mixing between

nodes, i.e., similar nodes are linked or not. Looking at nodes’ similarity in terms

of connectivity, assortative networks feature well-connected nodes joining other

well-connected nodes, whereas in disassortative networks strongly connected nodes

are linked to weakly connected ones. Newman (2002, 2003) showed that nodes’

connectivity in many social networks tends to be positively correlated. McPherson

et al. (2001) cite over one hundred studies that have observed homophily in some

form or another. Examples range from company director networks, co-authorship

and collaboration networks, or the network of email address books. On the contrary,
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8 A. Abbate et al.

most biological networks (protein-protein interaction network in the yeast cell,

metabolic networks in bacteria, food webs) or technological networks (the Internet

at the Autonomous System level, the network of hyperlinks between pages in the

World Wide Web, etc.) appear to be disassortative. Networks in economic contexts

may have features of both technological and social relationships (Jackson, 2010).

The evidence produced in the above mentioned studies on the topological prop-

erties of the ITN has generally neglected the issue of geographical distance and

space (for a review on spatial networks, see Barthelemy, 2011). Instead, this paper

explicitly takes on board geographical space in the way ITN graphs are defined.

More precisely, we build trade graphs by filtering international trade flows so

as to build trade-network structures, where the presence of any bilateral link is

conditioned on the geographical distance between its two end nodes (countries). We

will, therefore, analyze the topological properties discussed above conditional on

countries’ distance.

4 Data and methodology

In our analysis of the ITN, we employ the dataset made available by Subramanian

and Wei (2007), which includes aggregate bilateral imports in constant US dollar

for all countries, from 1970 to 2000.9

More formally, let nt be the number of countries present in the database in year

t, where a country i is said to enter the database if there is at least a positive import

or export flow associated to it. Define, as in Section 3, Wt as the nt × nt weight

matrix of the corresponding weighted directed ITN, where the generic element of

Wt, labeled as wt(i, j) represents the logarithmic transformation of positive-valued

export flows from country i to j in year t (and zero if the corresponding trade flow is

zero).10 We also define the time-t binary matrix At as the binary nt×nt matrix whose

generic element at(i, j) = 1 if and only if wt(i, j) > 0, and zero otherwise. Therefore,

we constructed both a weighted directed and a binary directed representation of the

ITN. The binary directed representation gives us information about the presence or

absence of trade partnerships, whereas the weighted directed representation adds to

the binary structure information about the heterogeneity of export flows carried by

each link.

The properties of the binary directed representation of the ITN built with this

dataset were examined by De Benedictis and Tajoli (2011) and Duenas and Fagiolo

(2013). Table 1 presents some descriptive statistics.

Over time, the ITN displays an increasing number of participating countries.

Entry of new countries in the database is due to the presence of at least a new

positive trade flow involving the entrant, and may be possibly caused either by the

availability of new data or by the actual entry of the country in the international

9 This dataset is built from the IMF Direction of Trade Statistics, reporting the importing country
bilateral trade values at current prices, then deflated by US CPI at 1982–83 prices. The dataset is
downloadable from the website http://www.nber.org/∼wei/data.html

10 We use a logarithmic scale instead of a linear one in order to make easier any comparison of our results
with those from standard log-log gravity-equation formulation. To allow for meaningful comparisons
across years, we also re-scale link weights by logs of yearly total world exports so as to account for
the overall increase in total trade over time.
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Distance-varying assortativity and clustering 9

Table 1. Summary statistics.

1970 1980 1990 2000

Countries (No.) 130 143 145 157

Trade flows (No.) 6593 8180 10289 11938

Density 0.393 0.403 0.493 0.487

Countries making up to 50% of trade 7 9 7 11

Flows making up to 50% of trade 71 88 67 77

Countries making up to 90% of trade 65 75 77 78

Flows making up to 90% of trade 793 893 747 854

Average trade flow 50.72 57.20 70.96 76.04

Median trade flow 54.50 60.00 64.00 70.00

Source: IMF, Directions of trade statistics.

trade market. New trade links, however, seem to increase more than quadratically

with the number of participating countries, as shown by the rising density of the

network over time.11 Note also that the number of countries making up a high

percentage (50% or 90%, respectively) of total trade tends to increase over the

years, hinting to an increasing engagement in trade by a larger number of countries.

However, given that also the total number of reported trading countries in our

sample is also becoming larger, this figure does not necessarily imply a significant

decline in the concentration of world trade.

In order to consider the effect of geographical distance on trade in the ITN defined

above, we begin considering the original binary (At) and weight (Wt) matrix (from

now on, we remove the time label to simplify the notation). To any given link ij

between countries i and j (i.e., to each ordered pair (i, j) such that a(i, j) = 1), we

associate the geographical distance d(i, j), computed using the great-circle distance

measure between the capital cities of the two countries. This allows us to build a

geographical-distance matrix D = {d(j, i)}, whose generic element is equal to the

geographical distance between countries i and j whenever the correspondent trade

link exists, and zero otherwise. Note that this matrix is by construction symmetric

and possibly changes through time as trade links are created or removed.

Figure 1 plots a kernel-density estimation for the distribution of the logs of

geographical distances between world countries in year 2000 (i.e., of the positive

upper-diagonal entries of the matrix D). It is easy to see that the distribution of the

logs of distance is skewed to the left and presents a peak at large distances.

Table 2 breaks down the values of total trade (in percent) according to the

different deciles of the distribution of distance among countries. The table suggests

that most international trade occurs at relatively short (less than 2,000 km) and

intermediate distances, but the distribution is very uneven.

11 The density in a directed network is computed as the ratio between existing links and the maximum
number of possible links, i.e., γt = mt

mmax
= mt

nt(nt−1) . For example, in 1970 one gets: γ1970 = 6593
130×129 =

0.393.
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10 A. Abbate et al.

Table 2. Share of total trade (in percentage) of each distance decile, by decade.

Decile 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Interval 0–1128 1129–1978 1979–2811 2812–3556 3557–4453 4454–5183 5184–5914 5915–6879 6880–8500 8501–12351
(km)

1970 31.35 16.32 3.72 5.60 4.52 12.14 6.35 9.75 4.71 5.53

1980 30.99 13.12 5.84 6.97 3.96 11.31 7.85 10.45 5.63 3.88

1990 37.14 14.64 4.01 3.50 4.66 9.01 7.55 12.46 3.17 3.85

2000 33.24 19.27 4.44 3.61 4.50 8.46 6.35 10.42 5.43 4.28

Source: IMF, Directions of trade statistics.
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Fig. 1. The distribution of geographical distance between country pairs. Kernel density

estimate of the distribution of distance (logarithmic scale). The middle dashed vertical line

indicates the median value of the distribution, the other dashed lines indicate the deciles of

the distribution, while the continuous vertical line, bounding the distribution to the right,

indicates half of the equator distance. (color online)

We employ the deciles of the distance distribution to filter the (weighted and

unweighted) ITN matrices. More specifically, we build two sets of 10 subnetworks to

obtain two families of distance-conditioned ITNs. The first family, which we call the

cumulated distance-conditioned ITN, is obtained by keeping in the networks, for each

decile of the distribution of distance, only the arcs associated to geographical

distances smaller than the upper-limit of that decile. For example, the fourth

cumulated distance-conditioned ITN is obtained by keeping in the binary and
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Distance-varying assortativity and clustering 11

weighted matrix only the arcs associated to pairs (i, j) of countries that are located

at a distance below that of the upper-limit of the fourth decile of the distribution

of distance (i.e., 3,556 km).

The second family of matrices, called simply distance-conditioned ITN, is obtained

by keeping in each one of the ten networks, only the arcs associated to geographical

distances belonging to that decile. For instance, the fourth distance-conditioned ITN

is obtained by keeping in the binary and weighted matrices only the arcs associated

to pairs (i, j) of countries that are located at a distance lower than that of the

upper-limit of the fourth decile and above the upper-limit of the third decile of the

distance distribution (i.e., between 2,811 km and 3,556 km).12

More formally, let us label with δ(1), . . . , δ(10) the deciles (in km) of the distribution

distance, with δ(0) = 0. In each year, we build 10 cumulated distance-conditioned

weight matrices, WC
k = {wC

k (i, j)}, k = 1, . . . , 10, according to the following rule:{
wC
k (i, j) = w(i, j) if d(i, j) � δ(k)

wC
k (i, j) = 0 otherwise

and 10 distance-conditioned matrices WNC
k = {wNC

k (i, j)}, for k = 1, . . . , 10:{
wNC
k (i, j) = w(i, j) if δ(k−1) � d(i, j) � δ(k)

wNC
k (i, j) = 0 otherwise

Obviously, the two network families are complementary. From the definitions

above, one can indeed start from WC
k and remove links in WC

k−1 to get WNC
k .

Similarly, one can build WC
k starting from WNC

h , h = 1, . . . , k. Whereas cumulated

networks give us a picture of the ITN for all trade relationships between countries

that are distant less than a given threshold, distance-conditioned networks (non-

cumulated) tell us what trade relationships can be imputed to trade relationships

between pair of countries whose distance is within a certain range.

Cumulative and simple distance-conditioned networks are then analyzed both

as binary (unweighted) networks and as weighted networks. In the binary case,

one simply builds the corresponding binary matrices AC
k = {aCk (i, j)} and ANC

k =

{aNC
k (i, j)} by adding an arc whenever the correspondent entry in the weighted

matrix is positive. It must be noticed that weighted and binary matrices provide

complementary information on the role of different types of costs in international

trade. In fact, the presence of fixed costs to access foreign markets should affect

the characteristics of the binary matrix, determining the number of links that each

country has, whereas trade variable costs (e.g., of the “iceberg” type) should affect

links’ weights, conditional on a link to be already in place.

In what follows, we start by presenting some baseline results for year 2000. The

same exercise is repeated for each decade, from 1970to 2000, in order to test whether

the impact of distance has changed over the years.

12 More generally, one can use any quantile-based breakdown of the original distribution range, e.g.,
quintiles or percentiles. The choice of deciles has been made in order to efficiently trade off the need
for a sufficiently larger number of distance classes and a sufficiently large number of observations in
each quantile class. Note also that in principle one could have employed distance classes delimited
by absolute km values, independently on the distribution. We preferred to use the quantile-based
breakdown because in so doing we are sure that in each class there will be the same, fixed number of
links. This implies that each subnetwork displays the same density. This avoids comparing subnetworks
characterized by different densities.
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5 Results

As customary in this literature (see, for example, Fagiolo et al., 2009, 2010;

De Benedictis and Tajoli, 2011), we begin by analyzing the main topological

characteristics of the network. The crucial difference with previous work is that we

do so across the different subnetworks obtained above by conditioning to distance

deciles. In particular, we focus on network connectivity (i.e., whether any two nodes

can be connected in the network by a chain of links), the distributions of total

node degree (i.e., a country’s number of partners) and total node strength (i.e., a

country’s total imports plus exports), average nearest-neighbors degree and strength

(i.e., average total degree or strength of the partners of a country), and clustering

(i.e., the probability, possibly weighted by link weights, that any pair of partners

of a node are themselves partners). Furthermore, for each decile, we examine the

distribution of link weights, the correlation structure among node statistics, and

the correlation structure between node statistics and some country macroeconomic

characteristics (e.g., GDP and GDP per capita).

The analysis of subnetworks created for different distance deciles shows that

considering the geographical distance between the nodes of the network indeed

matters. Distance-conditioned trade subnetworks display topological properties that

greatly change with distance deciles, as discussed in more details below.

5.1 Connectivity in the ITN

To begin with, we explore connectivity of the ITN as distance changes. The overall

ITN is evidently connected, i.e., any country in the world can be reached from

anywhere else in the network through undirected trade links.13 When splitting the

network based on distance, two interesting connectivity statistics are the number

of connected components and the size of the giant component (i.e., the number of

nodes making up the largest subset of connected nodes in the network). Of course if

only one connected component is observed then the giant component has the same

size of the overall network (as happens for the ITN as a whole).

Figure 2 shows how connectivity statistics change with distance in cumulated ITNs

for year 2000. As we keep adding longer distance trade relationships in the network,

the number of connected components sharply decreases, following a power-law

shape. Initially, when only small-distance trades are taken into account, a very large

number of small components emerge. This means that at small distances the ITN

is extremely disconnected. Indeed, the hubs of the network are typically joined with

countries that lie far apart. Accordingly, the relative size of the giant component

is very small (about 7%) and quickly increases toward 1 as we consider longer-

distance relationships. Complete connectivity only emerges when we start taking

into the picture trade relationships occurring at 4,000 km or more. This allows one

13 We employ throughout the concept of weak connectivity, which considers any two nodes connected if
there is any link between them, irrespective of its directionality. Strong connectivity instead requires
that pairs of nodes can be reachable via a directed path.
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Fig. 2. Connectivity in distance-conditioned cumulated ITNs in year 2000. Left: Number of

connected components vs. distance (log-log scale). Right: Size of the giant component (as a

share of number of nodes) vs. distance. (color online)

to have in the network also links between the hubs and peripheral countries that

are only connected to the hubs.14

5.2 Link weights and strength

Connectivity of the ITN over different distance intervals may be also studied in

terms of link weights, and node degree and strength. Figure 3 shows that as we

consider longer-distanced trade relationships in the ITN, average link weight initially

decreases very rapidly and linearly, as predicted by the gravity equation. At higher

distances, the effect of distance becomes strongly non-linear with respect to the

logs of link weights, and in fact the average weight value increases for intermediate

distances and then decreases again. All that maps into a smoother pattern for

cumulated distance-conditioned networks: the steepness of the relationship between

average link-weight decreases and distance decreases as we reach the median of the

distribution.

Note also that the variance of link weights (not shown) follows a U -shaped

pattern with respect to geographical distance , with the highest variance displayed

at very low and very high distances. Taken together, this evidence confirms the very

well-known negative relationship between trade flows and distance stressed in the

empirical gravity literature, but highlights very marked non-linearities in the way in

which distance affects both the average of (logs of) trade-flows and their conditional

variance, especially for long-distance trade relationships.

We now turn to study how the correlation between node-specific network prop-

erties changes with geographical distance. Figure 4 shows the linear correlation

coefficient computed between node out-degree (the number of countries to which a

country exports) and out-strength (i.e., total exports), with 95% confidence intervals,

in year 2000 for distance-conditioned networks.

14 This result is consistent over the years. Indeed, when looking at simple distance-conditioned ITNs, one
typically observes a stable number of connected components across deciles (between 15 and 23) and a
few of isolate nodes (between 4 and 13).
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Fig. 3. Average link weights (solid lines) for simple (right) and cumulated (left)

distance-conditioned networks. Dotted lines: 95% confidence bands. Year: 2000. (color

online)
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simple distance-conditioned networks. Dotted lines: 95% confidence bands. Year: 2000.
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As expected, correlation coefficients are very high at all geographical distances:

in general terms, countries that trade more also hold more trade partners. This

evidence confirms that the geographical extensive margin and the intensive margins

of trade are highly correlated. What is less expected is that distance does not affect

significantly this high correlation: if any, a weak positive impact of distance on

degree-strength correlation is detected, implying that the relation between number

of trade partners and trade flows is marginally stronger for long-distance trade

pairs. This result is in line with the suggestion by Chaney (2013). Furthermore, this

evidence suggests that the relative relevance of fixed and variable costs in affecting

overall trade costs—assuming that these are the variables affecting export volumes

and the number of partners— is fairly constant across distance.
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5.3 Assortativity and clustering

A number of previous analyses found a marked disassortativity pattern character-

izing the ITN, both at the binary and weighted level (Garlaschelli and Loffredo,

2004, 2005; Serrano and Boguñá, 2003; Fagiolo et al., 2008, 2009). A disassortative

(assortative) network is a graph where there is a negative (positive) correlation

between node degrees/strengths and average nearest-neighbor degrees/strengths.

More generally, a disassortative network is one where more (and more strongly)

connected nodes are typically connected with less (and less strongly) connected

nodes, i.e., countries tend to be connected with partners that are different in terms

of connectivity. But do disassortativity patterns in the ITN depend on geographical

distance? For example, do countries who trade more at a given distance tend to

trade with partners that trade less at the same distance scale?

To answer these questions, we analyze the existing correlation structure between

a country’s out-degree (or out-strength) and its average nearest-neighbor out-degree

(out-strength) in the distance-conditioned subnetworks obtained from our ITN.

More precisely, in the binary network, we correlate the number of countries which a

country exports to (its out-degree), with the average number of countries which those

partners exports to (its degree out-out). The same intuition applies for the weighted

network, once node degree is replaced by node strength. Figure 5 summarizes our

results in year 2000, for cumulated vs. simple distance-conditioned networks, and

for binary vs. weighted descriptions.

First of all, our analysis confirms that the aggregate ITN is found to be

disassortative at the aggregate level: the correlation between node degree (strength)

and ANND (ANNS) is negative in the cumulated network including all distances

(left panels of Figure 5). However, if one conditions the correlation structure to

geographical distance, it is easy to see that short-distanced networks exhibit a very

assortative pattern. The correlation coefficient is positive and quite high for all the

short-distance networks displayed in the figure, and the pattern is very similar in the

binary and weighted cases. As we add to the ITN links associated to higher distances,

correlation coefficients decrease smoothly and non-linearly toward a disassortative

pattern. More specifically, as Figure 5 shows, the ITN displays an assortative pattern

for small distances, it becomes weakly disassortative for long-distance partnerships,

while at intermediate distance no clear correlation patterns emerge. This means that,

when only short-distance trade partnerships are considered, countries with many

partners tend to trade with countries holding many connections. Conversely, at high

distances, very connected countries typically trade with poorly connected partners.15

Taken together, this evidence implies that patterns of assortativity or disassor-

tativity in the ITN are strongly dependent on distance, and the marked overall

disassortativity of the ITN is mainly driven by high-distance trade relationships. A

number of factors could produce this result. On the one hand, the existence of many

preferential RTAs fostering trade between similar and often neighboring countries

can explain the assortativity found at short distances. RTAs, if they integrate markets

in a given region and reduce the cost of reaching countries within the agreement, will

15 Note that we find a very similar pattern also when disaggregating assortativity with respect to import
market distance (as mentioned, the results for the analysis on imports are not reported in this paper),
suggesting that the directionality of trade flows is not a crucial factor in determining this result.
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Fig. 5. Left: Assortativity in cumulated distance-conditioned directed networks. Top: The

binary ITN case; bottom: The weighted ITN case. Right: Assortativity in simple distance-

conditioned directed networks. Top: The binary ITN case; bottom: The weighted ITN case.

For the binary case, the correlation coefficient is between node out-degree and directed average

nearest-neighbor degree (ANND) measures. For the weighted case, the correlation coefficient is

between node out-strength and directed average nearest-neighbor strength (ANNS ) measures.

Dotted lines: 95% confidence bands. Year: 2000. (color online)

typically generate a high number of strong trade links for all the member countries

inside the region, producing the positive correlation result. Even, without trade

agreements, barriers among countries belonging to a given geographical region tend

to be lower than average (WTO, 2011) because historically a number of ties might

have developed (for example, through migration or production links, or because of

a common cultural and institutional heritage). On the other hand, countries that

are geographically isolated from the rest of the world, when choosing an export

destination for their goods might tend to prefer a well-connected country that works

as a hub to connect them to rest of the system, as suggested by agglomeration

economies (Fujita and Krugman, 2004) and by the presence of export platforms

in the world trading system (Ekholm et al., 2007). This can in fact help to reduce

distribution costs or to be closer to the relevant suppliers of the needed inputs or

business services.

This preference will give rise to a disassortativity pattern at long distances. In the

thirty-year period considered by our analysis, the assortativity patterns discussed so

far seem to be relatively robust. If any, one notices an increasing disassortativity

over time at higher distances. In other words, countries with a high out-degree/out-

strength, i.e., important exporters, have been experiencing a significantly higher

probability of being connected with countries that in turn export relatively little to

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nws.2018.7
Downloaded from https://www.cambridge.org/core. Politecnico Milano, on 08 Jun 2018 at 13:48:05, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nws.2018.7
https://www.cambridge.org/core


Distance-varying assortativity and clustering 17

a limited number of markets. By year 2000, the largest exporters had reached nearly

every market in the world, even the countries that appear geographically isolated.

Therefore, the marginal cost of accessing additional markets seem to have become

very small, especially for big exporters.

The evidence of the simultaneity of disassortativity and assortativity patterns

for different distances suggests a structure of the world trading system where

regionalization and globalization forces co-exist. The global trading system is held

together by a relatively small number of highly connected countries, which are linked

to nearly every other node of the system, and play the role of hubs. At the same time,

we observe some tightly connected regions formed by nearby countries. Therefore,

the analysis of the trade structure shows globalization in terms of an increase in the

number of trading countries and trade flows (extensive and intensive margin) and the

presence of strong long-distance links connecting countries far apart, together with

an elevated regionalization, that is a high and rising regional clustering, revealing

a marked propensity to trade with close and similar trade partners. This confirms

the suggestion that globalization and regionalization need not to be juxtaposed (as

observed in Iapadre and Tajoli (2014) and Piccardi and Tajoli (2015)). The mix

of fixed and variable costs changes along distance, coherently with the observed

evidence of a switching from an assortative system to a disassortative one.

We turn now to explore the observed patterns of distance-conditioned clustering

coefficients. The clustering coefficient of a node in the ITN measures the likelihood

that a country forms intensive-trade triangles with its trade partners (Fagiolo, 2007).

Previous studies show that the binary version of the ITN (at all distances) is highly

clustered, whereas the weighted ITN displays a relatively weaker clustering, due to

the presence of many low-trade interactions that weaken the ex-post intensity of the

many triangular trade relations existing in the ITN (Fagiolo et al., 2009).

Figure 6 shows that distance plays a crucial role also in explaining evidence on

clustering. Indeed, both binary (BCC) and weighted (WCC) clustering coefficient in

cumulated distance-conditioned ITNs (left panels of the figure) non-linearly increase

as we add to the network longer distance trade partnerships. More specifically, BCC

and WCC reach a maximum when we consider trade relations close to 3,800 km,

and then decrease as we approach 6,000 km, and then increase again toward the

absolute maximum of average clustering. This suggests that most of the contribution

to maximum clustering by binary and weighted triangular trade interactions comes

from smaller-distance trade flows. This is confirmed by looking at the plot of

the BCC and WCC for simple distance-conditioned ITNs (right panels). Average

clustering non-linearly decreases toward zero as distance increases, meaning that

triples of countries that are very distant to each other almost never engage in

triangular trade relationships (with the exceptions of trade flows occurring between

countries whose distance is about 9,900 km). Hence, only short-distanced triples

of countries contribute to the large value of the overall BCC and WCC found in

the ITN. Notice again that strong non-linear effects affect the link between logs of

distance and network statistics.

Overall, also the emergence of a sharp decreasing relationship between distance

and clustering can be due to the impact of RTA effects: a RTA indeed favors

clustering as it creates and enforces the establishments of cliques (and thus triangular

trade relationships) among countries located relatively close to each other. Instead,
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Fig. 6. Left: Clustering in distance-conditioned directed networks. Right: Clustering in simple

distance-conditioned directed networks. Top: the binary ITN case; bottom: the weighted ITN

case. For the binary case, the binary clustering coefficient (BCC) computes for each node the

percentage of closed triangles in the node’s neighborhood. In the weighted case, the weighted

clustering coefficient (WCC) computes the intensity of such closed triangles, where triangle

edges are weighted by link weights. Dotted lines: 95% confidence bands. Year: 2000. (color

online)

the low clustering coefficient found for networks including only countries that are

geographically far apart reinforces the idea that some countries may play the role

of hubs of the system.

5.4 The role of country size and income

Gravity models emphasize the role played by economic size and income, in addition

to geographical distance, in shaping bilateral trade flows. To address this issue in the

present context, we begin by examining correlation patterns between network-based

statistics and country size and income (as measured by GDP and GDP per capita)

over different distance deciles. It is in fact well-known that—everything else being

equal—large countries tend to be also large traders. Even if large countries tend to

be less open than small ones for a variety of reasons, and therefore the trade-to-GDP

ratio tends to fall with GDP, it is still true that total trade values tend to grow with

GDP.

The four panels of Figure 7 show for year 2000 the plots of linear correlation coef-

ficients between node degree/strength and node GDP/per capita GDP, conditioned

on distance deciles.
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Fig. 7. Correlation between node degree/strength and GDP/per capita GDP vs. distance in

year 2000. Dotted lines: 95% confidence bands. (color online)

We note that the correlation between GDP and total degree and strength is

generally positive, even if it varies a lot across distance deciles. The correlation is,

especially high for a subset of trade flows involving pairs of countries that lie very

far apart (between 6,000 km and 7,000 km), but do not belong to the last two

deciles. This is true also for per-capita GDP, and it means that at large distances

economic size and income of countries heavily and positively influence their trade

values. Note also that correlation coefficients first increase and then decrease when

country GDP is considered. While distance certainly affects trade flows, the observed

pattern indicates the extent of this influence depends also on countries’ economic

size. These results suggest that there could be a sort of optimal distance value

that maximizes the correlation between country size and country connectivity in

terms of trade partners and total trade. On the contrary, at some distances, the

correlation between node connectivity and per-capita GDP could be very weak, or

not-significantly different from zero, as shown in the figure for a distance around

4,000 km.

The foregoing size/income correlation analysis, however, does not take into

account the fact that export flows bilaterally depend on both origin and destination

market sizes, as gravity model estimates of trade always confirm. In order to allow

for such a dependence in our data, we have investigated what happens when one

re-scales link weights by the expected bilateral flow in a frictionless world. In this

setup, the ij link weight is simply defined as exports from i to j (in levels) divided by

the product between the GDPs of country i and country j. In this way, the impact
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of origin and destination market sizes are washed away and we can understand how

distance affect the properties of the ITN regardless of any size effect.

As we did above, we used the logs of re-scaled link weights, namely, the log of

exports minus the sum of the logs of i and j GDPs. In order to avoid negative

weights, we have translated the entire distribution by a minimum threshold, in such

a way to preserve existing density. We have re-computed all (weighted) topological

properties of this GDP-re-scaled ITN to see how they change across the deciles of

the logs of distance distribution. Of course, the binary version of the ITN is almost

unaffected by this change, as the rescaling only influences positive original weights.

Results strongly confirm the main insights coming from the foregoing analysis. For

example, GDP re-scaling preserves the negative relationship between link weights

and distance in the distance-conditioned networks. What is more, non-linearities still

emerge in the log-log relation between weights and distance. The correlation between

node degree and node strength remains positive and very high, and relatively less

sensitive to distance. Weighted disassortativity patterns are instead unaffected by

the rescaling. This means that this result is not driven by country economic sizes.

Finally, the increasing relation between average weighted clustering and distance

in cumulated distance-conditioned networks is still present, even if slightly less

important: when we account for country GDPs, distance seems to impact a little less

on clustering. This difference wades away in simple distance-conditioned networks,

where we still observe a significant and negative impact of distance on average

weighted clustering.

This analysis can be of course extended by more strongly pursuing the idea of

filtering away gravity-based influences on export flows. Following Fagiolo (2010),

one could think to fit a gravity model to bilateral trade flows and to employ the

residuals to build a trade network where now flows are net of any effect coming from

size, borders, trade unions, etc. (excluding distance), and to explore the properties

of such network as distance changes.

5.5 Network structure and distance over time

So far, we have explored the connection between geographical distance and network

structure by focusing on year 2000. But what happens to this connection over the

years?

The distribution of average link weights over distance shown in Figures 8 and 9

displays some similarities over time, but also some changes: the average link weight

presents a downward trend over distance in all years, but the slope and the kinks

are different. In particular, in 1970 and in 1980, the weight of trade links moves

irregularly over a wide range of intermediate distances. In the more recent decades,

some of these swings smooth out, but the increase in the link weight at middle-

high distances becomes more evident. Overall, both from a simple and cumulated

perspective, the relation between trade flows and distance was very non-linearly

shaped also in the past, with only small-distanced and large-distanced trade flows

markedly decreasing with geographical distance.

Correlations between node degree/strength and country size/income across dis-

tance follows a very similar pattern from 1970 to 2000, basically reproducing what

we observe in Figure 7. The persistence in the role of distance that we pick up in
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Fig. 8. Average link weights (solid lines) for simple distance-conditioned networks. Dotted

lines: 95% confidence bands. Years: 1970, 1980, 1990, 2000. (color online)
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Fig. 9. Average link weights (solid lines) for cumulative distance-conditioned networks.

Dotted lines: 95% confidence bands. Years: 1970, 1980, 1990, 2000. (color online)
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Fig. 10. Assortativity and disassortativity. Years: 1970, 1980, 1990, 2000. (color online)

time is in line with the results found elsewhere in the literature using the gravity

model of trade (Disdier and Head, 2008). In our framework, we can interpret this

result by arguing that, as the size of the network increases over time, because the

number of relevant trading countries increases, geographical distance continues to

matter, as variable costs per kilometer might decline, but overall trade costs to stay

connected with the entire network remain high.

Our analysis shows that while the role of distance did not decline in time, its

impact on the relation between country’s economic size or income and country

connectivity has somewhat changed. In fact, we observe that the correlation levels

between nodes’ strength and countries’ average income were higher in 1970 than in

2000. This confirms an increased participation to global trade, especially by low-

and middle-income countries, probably due to the secular decline in trade costs and

in other trade barriers.

The reduction in the correlation seems to be the result of a change of the ITN

affecting especially countries in middle-distanced subnetworks: for these countries,

the correlation between their trade flows and average incomes has become lower

and less significant, possibly because of the historical reduction in trade costs.

Instead, as distance increases beyond this middle range, trade costs are still relevant

and therefore higher incomes—capable of overcoming such trade costs—are still

correlated with higher trade flows.

Much more evident are the changes over time in other features of the network

structure along different distances. As shown in Figure 10, the property of being

assortative at short distances but disassortative (or at least much less assortative)

at large distances has characterized the ITN since the 1970s. But over time, the

extent of the disassortativity at longer distances has increased substantially. In the
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Fig. 11. Clustering. Years: 1970, 1980, 1990, 2000. (color online)

past, when the potential number of trading countries was smaller and trade costs

were higher, the tendency to link to similar countries was stronger, and overall

assortativity prevailed. Nowadays, as the heterogeneity of countries involved in

international trade has increased, the disassortativity for large-distanced countries

is much higher.

Also, clustering has increased remarkably over the years, even if the pattern over

distance is somewhat similar in time (see Figure 11). This can again be related to

increase in the number of preferential trade agreements signed between countries.

Interestingly, the figure shows a clear increase in the clustering coefficient also for far

away countries. This evidence is in line with the more recent tendency of countries

to sign preferential trade agreements not so much with neighboring partners, but

also with countries in other continents (see WTO, 2011). These results confirm that

even if globalization and technological improvements have not eliminated the role

of distance as a hindering factor to trade, its impact on the overall structure of the

ITN has changed over the years.

6 Conclusions

In this paper, we explored whether the topological architecture of the ITN changes

in geographical space and along time. We employed geographical distance between

countries in the world to filter trade relationships in the ITN to build subnetworks

of countries who trade with partners located at similar geographical distances.

Our main result is that geographical distance matters also from a complex

network perspectives, as we find a relevant effect of distance on the ITN topological

properties, and we show that such an effect is highly non-linear.
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Our results highlight that the role of distance and trade costs in affecting trade

patterns is not only based on linear bilateral distance in miles, and that the relevance

of both a fixed and variable component of trade costs can jointly generate the type

of non-linearity observed here.

These results are very important to better understand the phenomenon of

globalization. In fact, globalization per se should imply that a country’s position

on the globe is irrelevant for its economic relations, as in a globalized system there

is not a more central position by definition. Instead, the relevance of geographical

distance in determining the connectivity of countries and the topological structure

of the system highlight that this definition of globalization does not fully apply to

what happened in the last part of the 20 century.

This is confirmed by the analysis showing that the geographical pattern of trade

and the geographical extensive margin are very different for groups of countries

at different distance ranges: while the aggregated ITN over all distance ranges

is disassortative, shorter distance subnetworks are assortative. Furthermore, the

trade intensity and number of triangular trade relationships decreases as distance

increases. Both results confirm that the structure of the ITN changes dramatically

in geographical space.

The results on the structure of the network also show the role of specific countries

working as hubs of the system, thereby assigning a more central position to some

specific nodes. These results indicate that the role of distance is different for countries

with different economic size, which should have a different capacity to overcome the

trade costs that distance imply. Large countries with very high trade volumes can

exploit the economies of scale associated with their size created by the presence of

fixed costs. Therefore, they can trade profitably also with far-away countries, and

they can play the role of hubs of the system.

The fact that the ITN is assortative when distance is small and disassortative

when it is large opens up interesting policy insights. First of all, this confirms that

economic shock transmission through trade, depending on the network structure,

is relatively independent from the shock size per se: the propagation can be very

different for apparently similar initial trade fluctuations according to which node

is hit. Therefore, a country exposure does not only depend on its trade over GDP

ratio, or on its distance from trade partners. Indeed, it is well-known (Newman,

2002) that exogenous shocks hitting assortative networks percolate more easily

among their nodes, as strongly-connected nodes tend to concentrate in a core

group, which, in the case of ITN, tends to be geographically concentrated. However,

these assortative clusters are also relatively resilient to such shocks because of the

redundancy in connectivity patterns. Therefore, groups of countries in the ITN that

are geographically close are at the same time more exposed to shocks and more

resilient to them with respect to countries that are more distant, which on the

contrary are less exposed to shocks but when they are hit take much longer to

recover after a shock.

Second, the choice of trade partners should not focus only on bilateral links

between countries. Not every trade link provides a similar access to the world market.

Access to the global market is facilitated for a country that is distant from the main

importers if it links to a hub of the system, possibly by joining the production chain

of such a hub, or to a lesser extent through a trade agreement that ease the access
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to the market of a central player. The results are also relevant to assess the scope

of trade agreements. In the past, trade agreements occurred, especially between

countries belonging to the same region, perceived as “natural trading partners.”

But insofar as a trade agreement facilitates trade with a given partner, its marginal

benefit can be higher when occurring between far away countries with higher trade

obstacles to overcome.

Comparing the results of the analysis over time, we note that the average trade

partner in the middle-distanced group has increased its relative strength or share

of total trade between 1970 and 2000, hinting to an increase participation in

international trade of such a group of countries. This is confirmed by the correlation

structure between network statistics and per-capita GDP.

The effect of distance over time is not trivial. Over the time period examined, the

size of the network increases, as the number of connected countries increase, and

the diameter of the network grows. Therefore, distance remains relevant (as shown

also in gravity models), in spite of a (relative) decline in trade costs, because the

incidence of such costs has increased for most countries with the increase of their

openness and of their number of trade links.

This study can be extended in many ways. First, one may want to explore

the topological properties of the ITN by explicitly embedding the network in

a spatial structure and use methodologies developed in the literature on spatial

networks (Barthelemy, 2011). Second, a more theoretical explanation building on

the interplay between fixed (sunk) and variable trade costs may be conceived, so

as to develop a proper network formation model able to replicate, for example, the

structural breaks detected in, e.g., assortativity patterns when we move from smaller

to higher distances. Furthermore, the empirical evidence in the paper is consistent

with Chaney (2013), the negative correlation between outDegree and ANND is

saying that only countries that are exporting to a lot of destinations are able to

reach remote markets. The model by Chaney also suggest an empirical test, if the

mechanism driving countries distribution of destination markets is the one suggested

by the model ones may expect a positive correlation between country productivity

(eventually proxied by income per capita) and the average distance of its export.
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