Skip to main content
Presentation
The Effects of Caffeic Acid Phenethyl Ester (Cape) on Oxidative Stress and Hypoxia
Research Day
  • Sarah Martin, Philadelphia College of Osteopathic Medicine
  • Andrew Castellano, Philadelphia College of Osteopathic Medicine
  • Chijioke Uzoaru, Philadelphia College of Osteopathic Medicine
  • Jonathan Lim, Philadelphia College of Osteopathic Medicine
  • Nicholas Carvis, Philadelphia College of Osteopathic Medicine
  • Peter Wieczorek, Philadelphia College of Osteopathic Medicine
  • Robert Barsotti, Philadelphia College of Osteopathic Medicine
  • Lindon H. Young, Philadelphia College of Osteopathic Medicine
  • Qian Chen, Philadelphia College of Osteopathic Medicine
Location
Philadelphia
Start Date
3-5-2017 1:00 PM
Description

Oxidative stress has been implicated in pathogenesis of hypoxia and ischemia/reperfusion (I/R) injury. In previous studies, we have shown that the antioxidant CAPE exerted cardioprotection in an isolated rat heart I (30 min)/R (60 min) injury model. In this study, we further evaluated the effects of CAPE on oxidative stress and hypoxia-induced cell damage. We evaluated the inhibition of absorbance in the phorbol 12-myristate 13-acetate (30 nM) induced superoxide production spectrophotometrically in isolated rat neutrophils via reduction of exogenous cytochrome C. We found that CAPE (0.5 µM- 40 µM; n=4-13) reduced phorbol 12-myristate 13-acetate induced neutrophil superoxide release dose-dependently from 29±3% to 95±2%. In a rat hind limb I (30 min)/R (60 min) model, blood hydrogen peroxide levels serves as an indicator of blood oxidative stress and was measured in real-time via a hydrogen peroxide microsensor (100 μm) inserted into both femoral veins (one served as sham, the other as I/R). We found that in the control group, I/R significantly increased blood hydrogen peroxide levels to 2.1±0.8 μM relative to the sham limb at 60 minutes reperfusion when saline was given at the beginning of reperfusion (n=5). By contrast, CAPE when given at reperfusion (40 µM, n=5) significantly reduced blood hydrogen peroxide levels from 30 min reperfusion and throughout the rest of experiment (p

This study was supported by Division of Research and Department of Bio-Medical Sciences at Philadelphia College of Osteopathic Medicine.

Citation Information
Sarah Martin, Andrew Castellano, Chijioke Uzoaru, Jonathan Lim, et al.. "The Effects of Caffeic Acid Phenethyl Ester (Cape) on Oxidative Stress and Hypoxia" (2017)
Available at: http://works.bepress.com/lindon_young/58/