Skip to main content
Article
Pathological Comparisons of the Hippocampal Changes in the Transient and Permanent Middle Cerebral Artery Occlusion Rat Models
Frontiers in Neurology
  • Fawad Ali Shah, Peking University
  • Tao Li, Xi'an Jiaotong University
  • Lina Tariq Al Kury, Zayed University
  • Alam Zeb, Islamic International University
  • Shehla Khatoon, Khyber Medical University
  • Gongping Liu, Tongji Medical College
  • Xifei Yang, Shenzhen Center for Disease Control and Prevention
  • Fang Liu, University of Toronto
  • Huo Yao, Peking University
  • Arif Ullah Khan, Islamic International University
  • Phil Ok Koh, Gyeongsang National University
  • Yuhua Jiang, Second Hospital of Shandong University
  • Shupeng Li, Peking University
Document Type
Article
Publication Date
11-14-2019
Abstract

© Copyright © 2019 Shah, Li, Kury, Zeb, Khatoon, Liu, Yang, Liu, Yao, Khan, Koh, Jiang and Li. Ischemic strokes are categorized by permanent or transient obstruction of blood flow, which impedes delivery of oxygen and essential nutrients to brain. In the last decade, the therapeutic window for tPA has increased from 3 to 5–6 h, and a new technique, involving the mechanical removal of the clot (endovascular thrombectomy) to allow reperfusion of the injured area, is being used more often. This last therapeutic approach can be done until 24 h after stroke onset. Due to this fact, more acute ischemic stroke patients are now being recanalized, and so tMCAO is probably the “best” model to address these patients that have a potential good outcome in terms of survival and functional recovery. However, permanent occlusion patients are also important, not only to increase survival rate but also to improve functional outcomes, although these are more difficult to achieve. So, both models are important, and which target different stroke patients in the clinical scenario. Hippocampus has a vital role in memory and cognition, is prone to ischemic induced neurodegeneration. This study was designed to delineate the molecular, pathological, and neurological changes in rat models of t-MCAO, permanent MCAO (pMCAO), and pMCAO with diabetic conditions in hippocampal tissue. Our results showed that these three models showed distinct discrepancies at numerous pathological process, including key signaling molecules involved in neuronal apoptosis, glutamate induced excitotoxicity, neuroinflammation, oxidative stress, and neurotrophic changes. Our result suggests that the two commonly used MCAO models exhibited tremendous differences in terms of neuronal cell loss, glutamate excitotoxic related signaling, synaptic transmission markers, neuron inflammatory and oxidative stress molecules. These differences may reflect the variations in different models, which may provide valuable information for mechanistic and therapeutic inconsistences as experienced in both preclinical models and clinical trials.

Publisher
Frontiers Media S.A.
Keywords
  • diabetes,
  • glutamate receptor,
  • hippocampus,
  • inflammation,
  • ischemic stroke,
  • neurodegeneration,
  • ROS,
  • transient and permanent cerebral ischemia
Scopus ID

85075990509

Creative Commons License
Creative Commons Attribution 4.0 International
Indexed in Scopus
Yes
Open Access
Yes
Open Access Type
Gold: This publication is openly available in an open access journal/series
Citation Information
Fawad Ali Shah, Tao Li, Lina Tariq Al Kury, Alam Zeb, et al.. "Pathological Comparisons of the Hippocampal Changes in the Transient and Permanent Middle Cerebral Artery Occlusion Rat Models" Frontiers in Neurology Vol. 10 (2019) p. 1178 ISSN: <p><a href="https://v2.sherpa.ac.uk/id/publication/issn/1664-2295" target="_blank">1664-2295</a></p>
Available at: http://works.bepress.com/lina-alkury/39/