Skip to main content
Article
Computational and Pharmacological Evaluation of Carveol for Antidiabetic Potential
Frontiers in Pharmacology
  • Muhammad Shabir Ahmed, Riphah International University
  • Arif Ullah Khan, Riphah International University
  • Lina Tariq Al Kury, Zayed University
  • Fawad Ali Shah, Riphah International University
Document Type
Article
Publication Date
7-29-2020
Abstract

© Copyright © 2020 Ahmed, Khan, Kury and Shah. Background: Carveol is a natural drug product present in the essential oils of orange peel, dill, and caraway seeds. The seed oil of Carum Carvi has been reported to be antioxidant, anti-inflammatory, anti-hyperlipidemic, antidiabetic, and hepatoprotective. Methods: The antidiabetic potential of carveol was investigated by employing in-vitro, in-vivo, and in-silico approaches. Moreover, alpha-amylase inhibitory assay and an alloxan-induced diabetes model were used for in-vitro and in-vivo analysis, respectively. Results: Carveol showed its maximum energy values (≥ -7 Kcal/mol) against sodium-glucose co-transporter, aldose reductase, and sucrose-isomaltase intestinal, whereas it exhibited intermediate energy values (≥ -6 Kcal/mol) against C-alpha glucosidase, glycogen synthase kinases-3β, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase, and other targets according to in-silico analysis. Similarly, carveol showed lower energy values (≥ 6.4 Kcal/mol) against phosphoenolpyruvate carboxykinase and glycogen synthase kinase-3β. The in-vitro assay demonstrated that carveol inhibits alpha-amylase activity concentration-dependently. Carveol attenuated the in-vivo alloxan-induced (1055.8 µMol/Kg) blood glucose level in a dose- and time-dependent manner (days 1, 3, 6, 9, and 12), compared to the diabetic control group, and further, these results are comparable with the metformin positive control group. Carveol at 394.1 µMol/Kg improved oral glucose tolerance overload in rats compared to the hyperglycemic diabetic control group. Moreover, carveol also attenuated the glycosylated hemoglobin level along with mediating anti-hyperlipidemic and hepatoprotective effects in alloxan-induced diabetic animals. Conclusions: This study reveals that carveol exhibited binding affinity against different targets involved in diabetes and has antidiabetic, anti-hyperlipidemic, and hepatoprotective actions.

Publisher
Frontiers Media S.A.
Keywords
  • alpha-amylase,
  • anti-hyperlipidemic,
  • antidiabetic,
  • carveol,
  • hepatoprotective,
  • molecular docking
Scopus ID

85089419298

Creative Commons License
Creative Commons Attribution 4.0 International
Indexed in Scopus
Yes
Open Access
Yes
Open Access Type
Gold: This publication is openly available in an open access journal/series
Citation Information
Muhammad Shabir Ahmed, Arif Ullah Khan, Lina Tariq Al Kury and Fawad Ali Shah. "Computational and Pharmacological Evaluation of Carveol for Antidiabetic Potential" Frontiers in Pharmacology Vol. 11 (2020) p. 919 ISSN: <p><a href="https://v2.sherpa.ac.uk/id/publication/issn/1663-9812" target="_blank">1663-9812</a></p>
Available at: http://works.bepress.com/lina-alkury/17/