Skip to main content
Article
Helical Single-Lamellar Crystals Thermotropically Formed in a Synthetic Nonracemic Chiral Main-Chain Polyester
Physical Review B
  • Christopher Y. Li
  • Donghang Yan
  • Stephen Z. D. Cheng
  • Feng Bai
  • Jason J. Ge
  • Bret H. Calhoun
  • Tianbai He
  • Liang-Chy Chien, Kent State University - Kent Campus
  • Frank W. Harris
  • Bernard Lotz
Publication Date
11-1-1999
Document Type
Article
DOI
10.1103/PhysRevB.60.12675
Keywords
  • smectic liquid-crystal,
  • polyethylene,
  • spherulites,
  • defects,
  • phases,
  • melt
Disciplines
Abstract
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials.
Comments

Copyright 1999 American Physical Society. Available on publisher's site at http://dx.doi.org/10.1103/PhysRevB.60.12675

Citation Information
Christopher Y. Li, Donghang Yan, Stephen Z. D. Cheng, Feng Bai, et al.. "Helical Single-Lamellar Crystals Thermotropically Formed in a Synthetic Nonracemic Chiral Main-Chain Polyester" Physical Review B Vol. 60 Iss. 18 (1999) p. 12675 - 12680
Available at: http://works.bepress.com/liang-chy_chien/18/