How to Make America Walkable

Michael Lewyn

Available at: http://works.bepress.com/lewyn/95/
Zoning and Land Use Planning

Michael Lewyn*

How to Make America Walkable

INTRODUCTION

A recent survey conducted by the National Association of Realtors showed that 66% of Americans describe being “within an easy walk of other places” as a “very” or “some-what” important factor in deciding where to live. But as urban planner Jeff Speck points out, many American cities and suburbs are “no-walking zones.” Streets are so wide that they seem “to take hours to walk across,” thus encouraging drivers to move so rapidly that a car/pedestrian collision is likely to be fatal. A pedestrian who survives this risky crossing often cannot easily reach other neighborhoods because of inadequate public transit. In Walkable City, Speck points out why walkability matters, and sets out a program for reform.

*Michael Lewyn is an Associate Professor, Touro Law Center. B.A., Wesleyan University; J.D., University of Pennsylvania; L.L.M., University of Toronto.

3Id. at 15.

4LEIGH GALLAGHER, THE END OF THE SUBURBS 83 (2013) (“Streets tend to be wider in more modern suburbs . . . and a wider street typically encourages drivers to go faster.”); Stephen H. Burrington, Restoring the Rule of Law and Respect for Communities in Transportation, 5 N.Y.U. ENVTL. L. REV. 691, 704 (1996) (pedestrian hit by car likely to die if car driving over 40 miles per hour).

5See Speck, supra note 2, at 19 (For example, buses in Miami seemingly “took forever” when author lived there.).
I. Why Bother?
Speck points out that the public interest favors making neighborhoods more walkable, because:

- **Walkable communities are healthier.** Someone who has more opportunities to walk is by definition more likely to engage in physical activity and thus less likely to be obese. Speck points out, for example, that transit users (who often must walk to bus and train stops) are more than three times as likely as drivers to have 30 minutes per day of physical activity. People who live in unwalkable areas have less opportunity for such activity and thus, other factors being equal, to be obese.

- **Walkability reduces pollution.** In walkable places, people drive less. And where people drive less, they emit fewer pollutants. Speck ably rebuts the notion that more fuel-efficient cars will make walkable communities unnecessary. Speck suggests that fuel efficiency makes driving cheaper, which in turn may cause people to drive more, which in turn may reduce the environmental benefits of increased fuel efficiency. He notes that the carbon impact of cars is not limited to the fuel burned while the car in motion, but also includes more indirect effects of cars, such as the energy used in building cars and transporting fuel.

- **Walkable communities are safer,** because fewer cars means fewer car crashes. Speck points out that the auto-oriented United States has traffic fatality rates far ahead of European countries, and that the least auto-oriented cities in the U.S. have auto fatality rates lower than those of Europe.

- **Walkable cities are more affordable,** because their residents do not have to spend as much money purchasing, fueling, and maintaining automobiles. Speck uses Portland, Oregon as an example: Portland’s residents

6See Speck, supra note 2, at 38.
7Id. at 40-41 (citing numerous studies).
8Id. at 57-60 (noting that most transit-oriented cities emit fewer greenhouse gases).
9Id. at 54.
10Id. at 54-55.
11Id. at 45.
drive 20% less than residents of other large cities, and thus collectively save $1.1 billion per year.\footnote{Id. at 29.}

A traditional argument for automobile-oriented development is that such development is a result of the free market, and what the free market has put together, no government should tear asunder.\footnote{See OLIVER GILLHAM, THE LIMITLESS CITY 75 (2002) (describing argument); Linda C. Fentiman, A New Form of WMD? Driving with Mobile Devices and Other Weapons of Mass Destruction, 81 UMKC L. REV. 133, 136 (2012) (“Americans have a love affair with . . . their cars.”). I note that this argument is flawed for another reason: car-oriented development is in large part a result of government regulation. See \textit{infra}. Parts II-A-1 and A-1-2 (discussing anti-pedestrian zoning regulations).} Speck responds that real estate values tend to be higher in walkable areas—a fact which suggests that consumers in fact favor walkability, because otherwise they would not be willing to pay higher prices to live in walkable places. In particular, Speck cites a study showing a correlation between high property values and high walkability ratings on Walkscore.com (a website that measures neighborhood walkability by counting the number of grocery stores, restaurants and other amenities within walking distance of a location):\footnote{See Walkscore, at \url{www.walkscore.com}.} every one-point increase in a site’s Walkscore rating, other things being equal, leads to a $2,000 increase in home price.\footnote{See Speck, supra note 2, at 27.}

It could be argued that there is some tension between Speck’s emphasis on affordability and his claim that walkability leads to higher housing prices. Speck responds by pointing out that a dollar spent on housing is better for a region’s economy than a dollar spent on gasoline, since the latter dollar is in large part going to go not only outside the region, but outside the United States to oil-producing nations.\footnote{Id. at 29. This is something of an oversimplification, since some car-related spending supports a local economy: insurance spending goes to local insurance agents, maintenance spending to local automobile mechanics, and gas spending in part to local gas stations.}
II. How to Increase Walkability

Most of Speck’s book focuses on how to make walking more desirable—in particular, how to make walking (1) more useful, (2) safer, (3) more comfortable, and (4) more interesting.17

A. Usefulness

For walking to be useful, “most aspects of daily life [must be] located close at hand and organized in a way that walking serves them well.”18 For example, my apartment in midtown Manhattan is surrounded by stores and restaurants. By contrast, in low-Walkscore areas, walking is not useful because stores are not located near housing. Speck writes that in order to make walking useful, cities must (1) allow more mixed-use zoning, (2) reduce or eliminate minimum parking requirements and (3) make public transit more useful.

1. Zoning Reform

American zoning codes generally divide cities into zones; each major land use (such as housing, offices or industry) often has its own zone.19 As a result of this “single-use zoning”20 many residential areas are not within walking distance of shops and jobs.21 Where residential zones extend for several miles, large chunks of these zones are not within walking distance of anything but other houses.22

Speck points out that single-use zoning is not limited to suburbia. He notes that in most small-city downtowns, there

17 Id. at 11 (“to be favored [over driving] a walk has to satisfy four main conditions: it must be useful, safe, comfortable and interesting”).
18 Id.
21 Id. at 2647 (“daily necessities, separated by use from residential areas, are no longer within walking distance”).
22 See, e.g., JACKSONVILLE PLANNING AND DEVELOPMENT DEPARTMENT, 2030 COMPREHENSIVE PLAN, FUTURE LAND USE ELEMENT 154, at http://www.coj.net/departments/planning-and-development/community-planning-division/comprehensive-plan.aspx (city land use map showing residential zones that are several miles wide, especially at city’s fringes).
is very little housing.23 For example, in downtown Lowell, Mass. one new housing development violated existing zoning in so many ways that the city granted fourteen zoning variances in order to allow the project.24 Speck’s remedy is to “Mix the Uses”;25 that is, for cities to allow, and even encourage, more housing in downtowns (and by analogy, in other areas near shops and offices).26 I wish, however, that Speck had been more specific. How did the Lowell project violate existing zoning? Which zoning reforms would be necessary to make downtown housing easier to build?

2. Parking Reform

Most American cities require landowners to provide off-street parking for tenants and customers.27 Speck points out that these regulations reduce walkability in a variety of ways.

First, minimum parking requirements make walking less useful by forcing pedestrians to walk through and around parking lots to reach other destinations. Because of these regulations, landowners must build parking lots where buildings would otherwise exist.28 If that land was occupied by something other than parking lots, pedestrians would have more stores and shops to visit, and walking would thus be more useful.

Second, parking requirements deter development in otherwise walkable urban neighborhoods. Under current law, someone who wishes to use an empty urban building as a store or office will usually have to comply with minimum parking requirements. However, such an entrepreneur will not be able to install parking next to the building as a suburban landowner might do, because urban buildings are often surrounded by other buildings and thus have no space for parking.29 The landowner could comply with the law by installing a garage above or below a building; however, such

23 See Speck, \textit{supra} note 2, at 106.

24 \textit{Id.} at 108.

25 \textit{Id.} at 105.

26 Speck’s planning practice specializes in downtowns. \textit{Id.} at 8. However, his insights are applicable by analogy to other commercial areas.

27 \textit{Id.} at 19-21.

28 For example, half of the land in downtown Buffalo is occupied by parking lots. \textit{Id.} at 123.

29 \textit{Id.} at 123.
parking lots are far more expensive than surface parking. Because of this expense, some landowners might prefer to develop in unwalkable suburbs where compliance with parking requirements is easier.

Third, minimum parking requirements in otherwise walkable areas make those areas less affordable, by forcing landowners to substitute parking for housing and thus reducing the housing supply. Speck, citing a variety of estimates, suggests that minimum parking requirements increase housing costs by 18% to 38%.

One traditional argument for minimum parking requirements is the fear of “spillover parking”: the fear that in the absence of off-street parking, customers of a neighborhood’s businesses will take over parking spaces in residential neighborhoods, thus taking away those spaces from neighborhood residents. Speck asserts that minimum parking requirements are not the only way to prevent spillover parking. For example, cities could impose an “in lieu of parking” fee on landowners who choose not to build parking themselves, and use the money to build city-owned parking lots a few blocks away from shopping districts. Under this system, pedestrians could walk through a shopping area without having to walk in and around parking lots.

3. Improve Transit

Walking is obviously more useful in a city with adequate public transit. Where public transit is plentiful and is oriented towards pedestrians, many people can walk to a bus or train stop, get off near a job or shop, and then walk to their ultimate destination. By contrast, where public transit is weak, most people will have little reason to walk: they must get in a car to reach any destination not within walking distance.

Thus, it is not surprising that cities with high transit use tend to be the most pedestrian-friendly cities. Speck notes that in larger cities where over 25% of workers use transit to get to work, around 10% of workers typically walk to work.

30 See Ryan McClain, Memorandum at 2, at http://www.lbl.gov/Workplace/transportation/assets/doc/WC08-2572_Parking_Structure_Memo_012909.pdf (in Walnut Creek, California, underground parking space costs $30,000 per space, while surface parking costs only $4,000).

31 See Speck, supra note 2, at 124.

32 Id. at 127.

33 Id. at 125.
By contrast, in the cities where fewer than 5% take transit, fewer than 3% walk to work.34

But how can a city become one of the “25/10 cities”? Some cities with new light rail systems still have low transit ridership;35 thus, it appears that new rail lines alone are not enough to increase transit ridership. What distinguishes these “failure stories” from the 25/10 success stories?

Speck explains that for transit to be useful to pedestrians, transit stations must be in compact neighborhoods—that is, neighborhoods where large numbers of people live within walking distance of transit.36 For example, when the Washington, D.C. subway was extended to the suburb of Arlington, Virginia, most of Arlington’s subway stops were placed in the suburb’s more compact, walkable areas.37 Forty percent of the residents in these neighborhoods use transit to get to work—and nearly all of them walk to the subway.38

By contrast, in low-ridership Dallas many light rail stations are in relatively unwalkable areas. These stations are surrounded by highways and parking garages, rather than by compact, walkable neighborhoods.39 Dallas appears to have

34Id. at 140.

35Id. at 146-47 (discussing Dallas as example; in Dallas, transit ridership actually dropped during 1990s as new rail system built).

36Id. at 144-45.

37Id. at 145. Other than mentioning that these areas were once built around streetcars, Speck does not really explain why these areas are walkable. However, I have lived at various times near two separate subway stops in Arlington, and can explain in more detail. Both of these neighborhoods (Ballston and Crystal City) are within walking distance not only of the subway, but of a wide range of other destinations. According to Walkscore, Ballston’s Walkscore is 90, and Crystal City’s score is 77 (or “Very Walkable” according to the website). See Walkscore, at www.walkscore.com; supra note 14 and accompanying text (describing Walkscore). In addition, both neighborhoods have a grid system for most streets, which means pedestrians can walk from one neighborhood street to another without going out of their way to cross a high-traffic street. See Google Maps, at maps.google.com (showing neighborhoods); Michael Lewyn, \textit{New Urbanist Zoning for Dummies}, 58 Ala. L. Rev. 257, 289-90 (2006) (comparing grids favorably to cul-de-sacs).

38See Speck, \textit{supra} note 2, at 145 (40% statistic). The Arlington subway stops have no parking; thus, it is likely that most passengers walk to the subway. See Metro, \textit{Interactive Maps}, at http://wmata.com/rail/maps/map.cfm? (most stops in Arlington lack parking).

39See Speck, \textit{supra} note 2, at 147.
a “park-and-ride”40 system: that is, one designed for the convenience not of pedestrians but of commuters who drive to a rail stop, park at a nearby parking lot, and then ride the train to a job elsewhere in the city. This system obviously encourages driving rather than walking.

Moreover, Dallas’ park-and-ride system is not even successful on its own terms: public transit ridership actually declined in Dallas after the light rail system was built.41 Why is this the case? Speck suggests that once a motorist enters his or her car, there is no reason not to drive all the way to work unless doing so is inconvenient—which is not the case in Dallas, where even the downtown has cheap parking.42

Based on this comparison, Speck proposes that transit improvements be based on the Arlington model: that is, that transit stations be placed in walkable neighborhoods.43 Where neighborhoods surrounding transit stations are not yet walkable, they can be made so by focusing development on these stations and by eliminating minimum parking requirements near the stations.44

B. Safety

As Speck points out, one major threat to pedestrian safety is the desire of American traffic engineers to “continually redesign city streets to support higher-speed driving.”45 High traffic speeds make walking unsafe: a pedestrian hit by a car going 40 miles per hour has an 85% chance of death (as opposed to only 5% for a pedestrian hit by a car going 20 miles per hour).46

To reduce traffic speeds, Speck favors a wide variety of policies, including narrower streets, adding on-street park-

40Id. (using term).

41Id. at 146. By contrast, transit ridership has increased nationally in recent years. See John Andrew Brunner-Brown, \textit{Thirty Minutes or Less: The Inelasticity of Commuting}, 43 GOLDEN GATE U. L. REV. 355, 362 (2013).

42See Speck, \textit{supra} note 2, at 148-49 (driving in downtown Dallas is “cheap and convenient” while downtown streets are unpleasant for pedestrians because they are “flanked by blank walls and parking lots”).

43Id. at 149.

44Id. \textit{See also supra} notes 28-32 and accompanying text (explaining why minimum parking requirements reduce walkability).

45Id. at 169.

46Id. at 172.
ing where none exists, altering traffic signals, reducing the number of one-way streets, and adding bike lanes to make bicycling safer.

1. Street Width
Speck suggests that a multilane street is typically a high-speed street, because a street with more than one travel lane in each direction offers drivers “the opportunity to pass and thus allows drivers to flip into a ‘road racer’ frame of mind.”47 This is especially true where, as is usually the case, travel lanes are 12 feet wide-twice the width of most cars, and the same width as an interstate highway.48 Speck asks: “if highways have twelve-foot lanes, and we are comfortable negotiating them at seventy miles per hour, wouldn’t we feel the same way on a city street of the same dimension?49

As a solution, Speck proposes “road diets”—replacing a four-lane street with a three-lane street (with one 10-11 foot lane in each direction and a third lane in the center for left turns).50 Speck points out that narrower streets are safer both for drivers and for pedestrians. After one such road diet in Orlando, the number of crash-related injuries fell by 68%.51 Speck adds that such road diets do not harm traffic flow, because creating a separate lane for left-turning vehicles allows other traffic to flow more efficiently.52

2. Parking
Speck favors reduced vehicle speeds—but that does not mean he always opposes accommodating automobiles. In particular, Speck favors on-street parking because parked cars “form a barrier of steel between a pedestrian and the

47 Id. at 166.
48 Id. at 170.
49 Id.
50 Id. at 166 (explaining road diets), 171 (suggesting 10-11 foot lanes ideal). Speck also points out that the most walkable cities have small blocks; for example, lower Manhattan and downtown Boston have some blocks that are less than 200 feet long, while car-oriented suburbs have blocks 1000 feet long or more. \textit{Id.} at 164. Speck notes that “a city with twice the block size requires each street to hold twice as many driving lanes.” \textit{Id.} at 165. In other words, long blocks create political pressure for wider streets.
51 Id.
52 Id. at 166-67.
roadway," thus protecting pedestrians from moving cars. Speck also notes that on-street parking is good for urban businesses, because customers can park in front of a business without inconveniencing pedestrians.

3. Traffic Signals

Municipal officials sometimes try to protect pedestrians from oncoming traffic by requiring them to cross the street only at crosswalks or below red lights. Speck points out that this practice is often dangerous for pedestrians, because drivers may turn right on red lights and left on green lights, thus plowing into pedestrians who are trying to follow the law. He notes that Washington, D.C. is trying to solve this problem through the “pedestrian head start” program, allowing a “walk” signal to appear three seconds before traffic lights change so that pedestrians can claim an intersection before drivers can proceed.

4. One-Way Streets

Many cities have turned their downtown streets into one-way streets, thus eliminating slowdowns caused by left turns across traffic. Speck asserts that by causing traffic to move more rapidly, one-way streets reduce pedestrian safety. In addition, one-way streets discourage motorists from stopping at shops along the way, thus reducing retail vitality, and making walking less useful. A motorist going 40 miles an hour on a one-way street is less likely to notice a shop on the street or on an intersecting street, and will not wish to go in circles to reach nearby streets. For example, after Savannah made its downtown streets one-way in 1968, one street

53 Id. at 182.
54 Id.
55 See BAR OWNER CLAIMS SHSU RETALIATED OVER SIGNS, HUNTSVILLE ITEM, SEPT. 5, 2013 (crossing in absence of crosswalk “generally referred to as jaywalking”); POLICE ISSUED 112 CITATIONS, ARREST 3 IN ‘SAFER ROADS’ ENFORCEMENT, JULY 26, 2013 (police cite pedestrians for jaywalking); NECESSARY LAWSUITS, THE DAILY NEWS, MARCH 22, 2013 at 4A (referring to crossing when light is green for motorists as “jaywalking” and “dangerous”).
56 See Speck, supra note 2, at 186-87.
57 Id. at 187.
58 Id. at 178.
59 Id.
60 Id. at 179 (noting that “half the stores on cross-streets lose their retail visibility, being located over the shoulders of passing drivers” and
lost almost two-thirds of its taxpaying addresses over the next few years. I find Speck’s arguments persuasive, but wish that he had responded to the argument that one-way streets actually increase pedestrian safety, because “pedestrians and drivers need only look one way when watching for traffic.”

5. Why Bicycling Matters

Some American cities have sought to facilitate bicycle use. For example, in New York City bicycle commuting has doubled since 2005—apparently because the city has added 225 miles of bike lanes. And in Portland, Oregon, the percentage of city residents bicycling to work increased from 1% in the 1990s to 8% today after the city added 275 miles of bikepaths and bike lanes. Speck asserts that growing bicycle use actually benefits pedestrians, because a “street with bikes . . . is a place where cars proceed more cautiously.” And in fact, Speck’s claim has some factual basis. For example, on two Manhattan streets where bicycle lanes were installed, reported accidents to all road users were cut in half. And in both New York and Portland, the risk of injury to bicyclists has declined.

Speck suggests that if other cities add large numbers of bicycle lanes and paths, they can achieve similar results. For example, in Copenhagen, most of the city’s major four-lane streets have been cut in half; the city has converted half of
these streets’ travel lanes into bike paths. When it snows, the city clears bike lanes before it clears the car lanes; moreover, these lanes are almost as wide as car lanes (8 feet, as opposed to the 5 feet common in the United States). As a result, more Copenhaghen residents now bike to work than drive.

A few other cities have tried additional pro-bike innovations. For example, Speck praises Washington, D.C.’s bike-sharing program: a resident can go to a docking station, stick in a key, and pay for a few hours of bicycling. Washington’s program has about 250,000 riders per month.

However, I wish Speck had discussed why bike lanes have been less successful in less walkable places. For example, between 2006 and 2011 I lived in a suburban part of Jacksonville, Florida that had a bike lane; however, the few bicyclists on the street generally preferred a sidewalk to the bike lane, perhaps because the bike lane was on an eight-lane speedway.

How are more successful bike lanes different from the one in Jacksonville? To be fair, Speck does hint at the answer, by noting that Canadians cycle more than Americans because of factors such as Canada’s “higher urban densities and mixed-use development [and] shorter trip distances.” It seems to me that less informed readers would benefit from a more detailed explanation of why these factors support bicycling. Perhaps Speck thought the explanation was too obvious to explain: since bicycles are slower than cars, a 20-mile commute is more difficult for a bicyclist than a 1-mile commute. Thus, a compact environment is better for bicy-

69 Id. at 193.

70 Id.

71 Id. at 194. By contrast, in the 1970s, motorists outnumbered bicyclists by three to one. Id. at 193-94.

72 Capitol Bikeshare, Capitol Bikeshare Dashboard, at http://cabidashboard.ddot.dc.gov/CaBiDashboard/#Home. See also Speck, supra note 2, at 204-05 (describing other innovations such as “bicycle boulevards,” which divert some car traffic from residential streets, and “sharrows,” which mark streets to announce the presence of bicyclists).

74 See Speck, supra note 2, at 192.
clists than the sort of sprawling, low-density environment common in Jacksonville.76

C. Comfort

Speck addresses three issues related to pedestrian comfort: parking, height limits and street trees.

1. Parking

Even where walking is safe and useful, it might not be comfortable. Speck notes that people “need a sense of enclosure to feel safe as pedestrians.”77 A row of buildings next to a sidewalk might make pedestrians feel enclosed, while 200-foot parking lots between a sidewalk and a building might eliminate this sense of enclosure. It follows that by increasing the number of parking lots, minimum parking requirements not only make walking less useful, but also reduce pedestrian comfort.78

In this regard, Speck could have mentioned the harm caused by setback requirements. In most U.S. cities and suburbs, the typical building must be set back 25 feet or more from the street.79 This rule robs American pedestrians of a sense of enclosure, because pedestrians are typically surrounded by 25 feet or more of emptiness rather than by buildings.

2. Building Height

Speck also addresses the difficult issue of height limits. Speck argues that regulations limiting building height protect pedestrians by reducing the amount of vacant lots and parking lots, especially in downtowns where skyscrapers tend to be more common. He reasons that “a single skyscraper can suck up an entire year’s worth of develop-

76Not one zip code in Jacksonville has over 4500 people per square mile. See Zipatlas, Population Density in Florida by Zip Code, at http://zipatlas.com/us/fl/zip-code-comparison/population-density.2.htm. By contrast, 100 other zip codes in Florida alone have higher density. Id. In turn, the most compact zip code in Florida has just over 19,000 people per square mile, id., lower than over 200 zip codes elsewhere in the United States. See Zipatlas, Population Density in the United States by Zip Code, at http://zipatlas.com/us/zip-code-comparison/population-density.3.htm.

77See Speck, supra note 2, at 213.

78Id. at 214-15.

79See Chad D. Emerson, Making Main Street Legal Again: The Smart-code Solution to Sprawl, 71 MO. L. REV. 637, 645 n.36, (2006) (under conventional American zoning codes, “front setbacks must be either a 25-foot grass yard or a paved parking lot”).
ment activity, while all of the surrounding blocks go empty.80 This view is based on a “fixed-sum” theory of downtown development: that is, if height limits prevent an employer from locating in high-rise A, it will move to otherwise vacant street B, thus creating a downtown full of occupied buildings. But this need not be the case: the employer might move to a suburb without height limits (and where cheaper real estate might outweigh the advantages of a downtown location). And by constricting the supply (and thus increasing the price) of downtown office space, height limits increase the likelihood of such employer-driven suburbanization.

Speck cites Washington, D.C. as an example of a healthy downtown with strict height limits.81 In Washington, no building may be over 160 feet tall.82 If Washington’s downtown was uniquely successful, the case for rigid height limits might be more persuasive. However, Washington’s downtown actually has a smaller share of regional employment than the average downtown,83 despite the fact that the federal government’s presence in downtown gives many employers a strong incentive to do business there.84

On the other hand, one might argue that Washington’s high percentage of commuters walking to work (11.1%, the second highest among major U.S. cities)85 suggests that its downtown is more effective in retaining residents than in retaining businesses. But other cities with less draconian height limits are equally walkable: Boston has more residents who walk to work (14.1% of all commuters) and San

80 See Speck, supra note 2, at 220.
81 Id. at 251.
84 For example, some years ago I worked for a communications law firm that benefitted from being several blocks from the Federal Communications Commission, because the firm’s attorneys could quickly come to the commission for meetings or to file documents.
Francisco and New York have between 10% and 11%. All three cities have dozens of skyscrapers, unlike Washington. Thus, it is not at all clear that Washington’s height limits are responsible for the city’s high level of success.

3. Street Trees

Speck points out that street trees are essential to pedestrian comfort, because they offer shade and limit the effects of wind and rain. In addition, medical studies show that exposure to trees reduces stress, and thus benefits human health. Unfortunately, traffic engineers often oppose street trees, because they are worried about motorist/tree collisions. Speck responds to this concern by suggesting that street trees actually make roadways safer, because without trees to worry about, motorists drive more rapidly, causing crashes to become more deadly. He cites numerous studies showing that the presence of street trees actually correlates with a reduction in traffic-related injuries; for example, one study compared two sections of the same Orlando street, and discovered that a section without trees had 45% more injurious crashes than the section with trees.

I would have added one point to Speck’s discussion: that although street trees are a blessing where they shade sidewalks, street trees in places without sidewalks do more harm than good. In residential areas with no sidewalk, the least dangerous place to walk is typically a lawn adjoining

86 Id.
87 See Emporis, Cities with the Most Skyscrapers, at http://www.emporis.com/statistics/most-skyscraper-cities-worldwide (Boston, San Francisco and New York are all among 50 cities in the world with the highest number of skyscrapers; all have over 40, while Washington not even within top 100.). The website’s list of skyscrapers seems to include any building over 300 feet. See Emporis, Skyscrapers in Boston, at http://www.emporis.com/city/boston-ma-usa/skyscrapers/3 (shortest Boston building defined as skyscraper is 330-foot-tall, 19-story courthouse). By contrast, Washington’s height limits now prohibit buildings over 160 feet tall. See supra note 82 and accompanying text.
88 See Speck, supra note 2, at 223.
89 Id. at 224 (for example, surgical patients with tree views “required many fewer doses of potent narcotics, had a lower likelihood of postsurgical complications, and were discharged from the hospital, on average, a day earlier”).
90 Id. at 224-25.
91 Id. at 225.
92 Id. at 225-26.
the street. But in such places, trees and shrubs often gobble up land that would otherwise be used for lawns, thus forcing pedestrians into a car-filled street.

D. Making Walking Interesting

Speck points out some of the same factors that may make walking uncomfortable or useless also make it boring. In particular, the blank walls of parking garages create an “unrewarding view” and thus make walking less appealing. Speck suggests that commercial space with windows should be on ground floors near sidewalks, and that parking should be hidden inside buildings. Where this is the case, pedestrians can look at shops rather than blank walls.

Another factor that makes walking interesting is variety. Speck suggests the following code provision: “no more than 200 feet of continuous street frontage may appear to have been designed by a single architect.” Although Speck’s proposal may be both too vague to be a useful city ordinance, it is a welcome corrective to the common idea that zoning should prohibit anything inconsistent with a neighborhood’s current character.

Speck also suggests that some cities may overemphasize green space, because green spaces that are not near other destinations may be dull. Speck supports both large regional parks and smaller parks, but emphasizes that not every block needs open space.

III. Conclusion

Speck sets out to explain why so much of the United States is unwalkable- and in this task, he succeeds. Although he does not address every single issue that might be worth discussing, his book is an excellent guide to the key barriers to walkability.

93 Id. at 237.
94 Id. at 238-39.
95 Id. at 248.
96 See, e.g., South Whitehall Township, Zoning-Zoning Hearing Board, at http://www.southwhitehall.com/zhb.html (in deciding whether to grant zoning variance, city decides whether proposal “out of character with the surrounding neighborhood”).
97 See Speck, supra note 2, at 250.
98 Id. at 250-51.