Skip to main content
Article
An experimental study on the characteristics of wind-driven surface water film flows by using a multi-transducer ultrasonic pulse-echo technique
Physics of Fluid
  • Yang Liu, Iowa State University
  • Wen-Li Chen, Iowa State University
  • Leonard J. Bond, Iowa State University
  • Hui Hu, Iowa State University
Document Type
Article
Publication Version
Published Version
Publication Date
1-1-2017
DOI
10.1063/1.4973398
Abstract
An experimental study was conducted to investigate the characteristics of surface water film flows driven by boundary layer winds over a test plate in order to elucidate the underlying physics pertinent to dynamic water runback processes over ice accreting surfaces of aircraft wings. A multi-transducer ultrasonic pulse-echo (MTUPE) technique was developed and applied to achieve non-intrusive measurements of water film thickness as a function of time and space to quantify the transient behaviors of wind-driven surface water filmflows. The effects of key controlling parameters, including freestream velocity of the airflow and flow rate of the water film, on the dynamics of the surface water runback process were examined in great details based on the quantitative MTUPE measurements. While the thickness of the wind-driven surface water film was found to decrease rapidly with the increasing airflow velocity, various surface wave structures were also found to be generated at the air/waterinterface as the surface water runs back. The evolution of the surface wave structures, in the terms of wave shape, frequency and propagation velocity of the surface waves, and instability modes (i.e., well-organized 2-D waves vs. 3-D complex irregular waves), was found to change significantly as the airflow velocity increases. Such temporally synchronized and spatially resolved measurements are believed to be very helpful to elucidate the underlying physics for improved understanding of the dynamics of water runback process pertinent to aircraft icing phenomena.
Comments

This article is from Physics of Fluids 29 (2017), doi:10.1063/1.4973398. Posted with permission.

Rights
This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.
Copyright Owner
American Institute of Physics
Language
en
File Format
application/pdf
Citation Information
Yang Liu, Wen-Li Chen, Leonard J. Bond and Hui Hu. "An experimental study on the characteristics of wind-driven surface water film flows by using a multi-transducer ultrasonic pulse-echo technique" Physics of Fluid Vol. 29 Iss. 1 (2017) p. 012102
Available at: http://works.bepress.com/leonard_bond/42/