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Across landscapes the availability of suit-
able habitat limits the distribution of plant
species. Vegetation models establish a relation-
ship between species distributions and envi-
ronmental variables (Roberts and Cooper 1989,
Franklin 1995, Vayssières et al. 2000). Predictive
vegetation modeling differs from vegetation
modeling in both its use and production of
spatial data (Miller and Franklin 2002). This
form of modeling often employs GIS capture,
storage, manipulation, analysis, and display of
these spatial data.

The predictive power of vegetation models
depends on the strength of correlation between
the species occurrence and identified habitat
variables (MacDougall and Loo 2002). A vari-
ety of statistical methods have been used to
relate plant species distribution to spatial dis-
tribution of environmental predictor variables

(Table 1); however, no single method is clearly
superior. Some of these techniques are reviewed
in Franklin (1995), Guisan et al. (1999), Guisan
and Zimmermann (2000), Austin (2002), Ejrnæs
et al. (2002), Elith and Burgman (2002), Elith
et al. (2002), Guisan et al. (2002), Miller and
Franklin (2002), Rushton et al. (2004), and
Guisan and Thuiller (2005). Most studies con-
centrated on broad-scale predictions (e.g., about
communities, alliances, or on widely distrib-
uted, abundant individual species; Table 1).

Particularly for rare species, small geogra-
phic ranges and/or narrow habitat specificity
lead to acute habitat limitation that is often
strongly correlated with specific environmen-
tal variables. Therefore, if the biotic and phys-
ical parameters of plant distributions can be
quantified, models should be able to predict
species distributions within a landscape. The
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TABLE 1. A partial list and summary of relevant literature. ANN—artificial neural network, CART—classification and
regression trees, CCA—canonical correspondence analysis, CT—classification trees, DA—discriminant analysis,
EFNA—ecological niche factor analysis, GAM—generalized additive models, GARP—genetic algorithm for rule-set
prediction, GIS—geographic information system, GLM—generalized linear model, GLMM—generalized linear mixed
model, LiR—linear regression, LoR—logistic regression, MARS—multivariate adaptive regression splines, NMS—non-
metric multidimensional scaling, NN—neural network, PCA—principal components analysis, ZIP—zero inflated nega-
tive binomial regression.

Spatially
Author Year Analysis method explicit Modeling unit

Bio et al. 1998 GAM, GAM, multiple LoR no Species 
Bio et al. 2002 GAM, GLM yes Species 
Boetsch et al. 2003 Mahalanobis distance yes Rare species 
Brown 1994 GAM, GLM yes Vegetation types 
Cairns 2001 ANN, CT, GLM yes Species 
Cawsey et al. 2002 GAM yes Species 
Cherrill et al. 1995 GIS matrices yes Rare species 
Collingham et al. 2000 Stepwise LoR yes Rare and nonnative species
Dirnböck, et al. 2002 GAM no Local vegetation 
Elith and Burgman 2002 GLM, GAM, GARP no Rare species 
Engler et al. 2004 ENFA, GLM yes Rare species 
Fertig and Reiners 2002 Logistic regression, CART yes Species 
Franklin 1998 CT, GAM, GLM yes Species 
Franklin 2002 CT yes Species 
Gioia and Pigott 2000 GLM with SPMODEL software yes Species 
Guisan et al. 1998 GLM yes Species 
Guisan et al. 1999 CCA, GLM yes Species 
Guisan et al. 2006 GAM yes Species 
Harrison et al. 2000 Multiple LiR yes Endemic species richness
Hill and Keddy 1992 Stepwise multiple regression no Rare species 
Hirzel and Guisan 2002 GLM no Virtual species 
Hooten et al. 2003 Hierarchical Bayesian yes Species

models 
Imm et al. 2001 χ2 yes Rare species 
Jelaska et al. 2003 CT, DA, multiple LoR yes Species and communities
Luoto 2000 Multivariate LiR yes Rare species richness 
Luoto et al. 2002 GLM yes Rare species richness 
Miller and Franklin 2002 CT, GLM yes Vegetation alliances 
Moisen and Frescino 2002 ANN, CT, GAM, MARS no Forest characteristics 
Moore et al. 1991 CT yes Forest communities 
Nilsson et al. 1988 Mann-Whitney no Rare species 
Pearce and Ferrier 2001 GAM, GLM, ZIP yes Species abundance 
Robertson et al. 2003 Multiple LoR, PCA yes Species 
Sperduto and 1996 Equal and weighted χ2 yes Rare species 

Congalton 
Stahle and Chaney 1994 Identified co-occurring yes Species 

habitat variables
Thuiller et al. 2003 CT, GAM, GLM yes Species 
van Horssen et al. 1999 Multiple stepwise logistic yes Species

Gaussian regression
and krieging 

Vayssières et al. 2000 CT, GLM, LoR no Species 
White and Miller 1988 Multiple regression no Community 
Wiser et al. 1998 GAM, LoR no Rare species 
Wu and Smiens 2000 Nonstatistical modeling yes Rare species 
Zaniewski et al. 2002 ENFA, GLM yes Species
Zimmerman 1999 LiR yes Community

and Kienast



potential role of GIS in predicting sensitive
plant habitat was recognized at least 19 years
ago (e.g., Myatt 1987). However, employing
distribution models with GIS for predictive
mapping of rare plant habitat and distribution
remains insufficiently explored (Franklin 1995,
Luoto et al. 2002).

Efforts to predictively model rare plant
habitats and distributions have been few, and
the degree of success highly variable (Sper-
duto and Congalton 1996, Wiser et al. 1998,
Imm et al. 2001, Edwards et al. 2005). Equally
varied are the definitions of rare plants in-
cluded in these studies. A species is generally
regarded as rare if it has low abundance and/or
a small range (Gaston 1994). More specifically,
distributions of rare species fall into 3 cate-
gories (Rabinowitz 1981). First, a rare species
may be known from only a few individuals
occurring over a large area. Second, a rare
species may occur as small populations, but
with populations widely scattered in geogra-
phic ranges. Finally, populations may be large,
but the number of populations may be very
small. Many “rare species” in the literature are
widespread and infrequent, an attribute that
complicates modeling. However, Boestch et al.
(2003) suggest that rare species well suited for
modeling are relatively common in their re-
spective habitats and respond to “large-scale”
gradients.

The objective of this research was to develop
predictive vegetation models of rare plant
habitat for 4 species and test their utility. We
used a GIS database to develop and evaluate
models at 2 scales: a local (field-site) scale and
a landscape scale.

METHODS

Study Area

The study area was located in the eastern
Great Basin of west central Utah. The land-
scape consisted of north–south trending basin
and range topography dominated by limestone
and dolomite. Soils were predominantly deep
and well-drained aridisols, entisols, and mol-
lisols (Wilson et al. 1975). Annual precipitation
ranged from 100 mm in the valleys to 450 mm
in the mountains, and was generally lowest
from summer through midautumn (Holmgren
1972). Average annual temperatures in the area
ranged from 7ºC to 13ºC (45ºF to 55ºF). The
growing season ranged from 40 to 200 days 

(Ashcroft et al. 1992) and was inversely related
to elevation. The extreme environment of the
study area provided an effective test of predic-
tive models because physical parameters pro-
vided the primary constraints to species’ dis-
tributions.

Species

We selected 4 endemic perennial species
representing a range of habitat types, commu-
nity associations, and elevation. Sphaeralcea
caespitosa occurs mainly on limestone and
dolomite outcrops of Cambrian through Devon-
ian formations (Franklin 1996). Penstemon con-
cinnus inhabits calcareous and igneous gravels.
Both species occurred in lowland desert shrub
communities (1510–2300 m; Albee et al. 1988).
Jamesia tetrapetala and Primula domensis occur
in crevices of limestone cliffs in the montane
zone (2000–2750 m; Welsh et al. 1993). Sphae-
ralcea caespitosa, P. concinnus, and J. tetrape-
tala are considered endangered throughout
their range, and Pr. domensis, is considered
critically endangered throughout its range
(Atwood et al. 1991); however, none are feder-
ally listed. Distributions of rare plant species
with small geographic range and/or narrow hab-
itat specificity generally correlate with physi-
cal factors (Shultz 1993, Gaston 1994); thus,
we expected these species would lend them-
selves well to modeling, despite their rarity.

Modeling Overview

We used an iterative process of field visits
and predictive vegetation modeling over 2
field seasons. Data collected in the 1st year
were used to develop models that were tested
in the 2nd field season. In addition to valida-
tion, the 1st year models served to effectively
stratify the sampling effort in the 2nd field
season. In order to maximize the number of
samples available for modeling, validation data
collected in the 2nd season were subsequently
pooled with the 1st year’s data to develop the
final models. All models in both years were
10-fold cross-validated for error estimation,
and samples used in model development were
never used in assessing model error rates. Two
types of models were developed for each of 4
rare species: a site-specific predictive field
key and a spatially explicit map of potential
habitat. The predictive field keys used data
collected in the field and were designed for
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subsequent use in the field. The spatially ex- 
plicit models predicted occurrence probabilities
as a map based on GIS-defined site properties
and served to prioritize field survey sites. Our
approach of modeling at 2 different scales was
similar to approaches of Wiser et al. (1998)
and Wu and Smeins (2000), and allows for dif-
ferent environmental influences operating at
different scales.

Field Methods and 
Data Collection

Initial baseline information for plant loca-
tions came from herbarium voucher speci-
mens. Even though herbarium records may be
biased by nonsystematic sampling (i.e., based
on access, site “appeal,” and other preferences;
MacDougall et al. 1998), vouchers often pro-
vide the best data available and have been
used in other studies (MacDougall et al. 1998,
Wiser et al. 1998, Gioia and Pigott 2000, 
Hijmans and Spooner 2001). We used only
vouchers with locality descriptions precise to
within 0.5 km2 (quarter section). The 4 species
selected were conspicuous enough, especially
when flowering, that detection probability was
very high.

We sampled 171 sites in 1996 and 296 sites
in 1997. Sampling strategies during the 1st
field season were voucher driven. While this
approach potentially introduced spatial auto-
correlation in the data, random or stratified
sampling strategies could not produce suffi-
cient numbers of presence sites for model
development. During the 2nd season, field
sampling was stratified by model predictions
based on the 1st year’s data and included
equal proportions of samples of all prediction
probability groups (absent 0–0.24, unlikely
0.25–0.49, likely present 0.5–0.74, very likely
present 0.75–1.0).

Sites were defined as areas >100 m2 of
uniform slope, aspect, geology, and vegetation
composition. Consequently, perimeters, areas,
and shapes of sites varied. All sites were field
mapped on U.S. Geological Survey (USGS)
7.5′ topographic maps and geographic coordi-
nates recorded on GPS units. GPS coordinates
were differentially corrected to 2-m accuracy.
Each site was also assigned a geographic iden-
tity (i.e., Tule Valley, House Range) following
USGS place names as they appeared on 7.5′
quadrangle maps.

Site data included elevation, percent slope,
slope orientation, slope position, topographic
position, and a checklist of all vascular plant
species present. Slope position was described
and coded as hilltop, upper slope, midslope,
lower slope, or flat. Topographic landform
classifications followed a 9-unit land surface
model (Dalyrymple et al. 1968) with the addi-
tion of 2 categories describing erosion areas.
Our field categorization was based on appar-
ent evidence of landscape-scale processes.

Because soil texture influences vegetation
patterns (Parker 1991, Knight 1993, McAulliffe
1994), we collected samples from the upper 10
cm of soil. Analysis included hand-texturing,
wet and dry color identification, calorimetric
pH measurements, and testing for calcium
carbonate. Not all sites had soil present.

Statistical Methods and 
Predictive Modeling 

We chose classification trees (CT) to de-
velop the predictive models because their utility
has been well documented (Roberts and Cooper
1989, Franklin 1998, De’ath and Fabricius 2000,
Vayssières et al. 2000, Fertig and Reiners 2002).
CTs make no assumptions about data distribu-
tion, often require only a few variables to
achieve an accurate classification (Dobbertin
and Bigging 1998), and are easy to interpret
and incorporate into other models (LeMay et
al. 1994, Dobbertin and Bigging 1998). CTs
also have the advantage of using an explana-
tory variable more than once ( Jelaska et al.
2003), and they allow for nested dependen-
cies. For a more detailed discussion of the tree
classification process, see Clark and Pregibon
(1992). We developed the predictive models
with a tree classification program in S-Plus
(MathSoft 1998). All models were 10-fold
cross-validated (Fielding and Bell 1997). The
ultimate predictive model took the form of a
dichotomous key that could be incorporated
into a computer program for extrapolation
over large areas (Roberts and Cooper 1989).

Field keys and the spatially explicit (GIS)
models were derived from different sets of
variables that reflected the data available at
such a scale. Multiple models were developed
for each species using various subsets of the
variables to find the best model and to assess
the utility of different variables. Elevation,
aspect, and slope were common to both field
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and GIS models. Aspect, a circular variable,
was converted into aspect value, calculated as
0.5[cos(Aspect) + 1] (Roberts and Cooper
1989). We fitted separate models in which
slope orientation was defined as aspect or
aspect value. Data unique to either group of
models are described in following sections.

Model Evaluations

Error matrices, comparing observed pres-
ence and absence to predicted presence and
absence, were developed for each model to
facilitate model evaluations and comparisons.
Model predictions with probabilities ≥0.5 were
treated as “presence”; probabilities <0.5 were
treated as “absence.” For rare species, a model
that always predicted absence would have
very high accuracy, but would not be useful.
Therefore, we evaluated each model from 3
perspectives: accuracy, utility, and bias. Accu-
racy was the ratio of correct predictions to all
predictions. For the purposes of this study,
errors of commission (false positive) were con-
sidered less problematic than errors of omis-
sion (false negative; Franklin 1998). Errors of
commission could be more easily field-cor-
rected than errors of omission. Accordingly,
models were also considered in terms of their
ability to correctly predict presences. Sensitiv-
ity to presence, or “utility,” was calculated as
the ratio of correctly predicted presences to
the sum of omissions, commissions, and cor-
rectly predicted presences. This yielded a value
between 0 (a useless model) and 1 (a model
with no errors of omission or commission).
Utility is related to the statistic’s “sensitivity”
and “specificity,” often used to analyze confusion
matrices (Fielding and Bell 1997, Vayssières et
al. 2000). Utility included errors of commis-
sion and omission in a single, more stringent
statistic. The final term, bias, describes the
direction of the model’s errors with respect to
predicted and actual presences, and was cal-
culated as the difference between total pre-
dicted presences and total actual presence
divided by total actual presence. Negative val-
ues indicated omission tendencies and posi-
tive values indicate commission tendencies. In
summary, the ideal model had high accuracy,
high utility, and low bias.

Field Key Model 

A field key of potential species occurrence
was derived from field measurements. In addi-

tion to environmental characteristics, a check-
list of all vascular plant species present at the
site was completed. Selection of possible indi-
cator species was based on high conditional
probabilities of occurrence (high relative fre-
quency of occurrence of the rare species given
that the associated species was present).

Spatially Explicit (GIS) 
Model

We developed models from a GIS database
using only predictors that could be mapped
across the entire study area. Data came from a
database developed for a larger study by Sharik
et al. (2000). Elevation, slope, and aspect val-
ues were derived from a digital elevation
model (DEM) with 100-m2 resolution. State
Soil Geographic Database (STATSGO) data
were mapped at a scale of 1:250,000 and in-
cluded clay content, cation exchange capacity
(CEC), litter layer depth, organic material
content, permeability, pH, depth to bedrock,
salinity, and depth to water table. In addition,
we digitized Hintze’s (1980) 1:500,000 geo-
logic map because, across a broad elevation
range, distribution of rare plant taxa can corre-
late strongly with specific geologic formations
(Heil et al. 1993). The digital geologic map
included formation name, geologic period of
the formation (age), rock type (e.g., limestone),
formation process, and the presence of car-
bonates. No land-use data existed in any orga-
nized or digital form. Although we knew that
climatic factors also influence species distribu-
tions (Reichenbacher and Zamundio 1993),
such data would be problematic given the very
low density of climate stations in the study
area. Because these data would have been
derived from terrain-sensitive interpolations
of very limited, “punctually-distributed” data,
they would have had very low precision (Guisan
et al. 1999). Therefore, we excluded such data
from the modeling efforts.

In order to associate each sample point
with all environmental attribute values, we
intersected geographic UTM (Universal Trans-
verse Mercator) northing and easting coordi-
nates for each site with the database to pro-
duce a dataset used to develop the GIS-based
models. Model predictions developed from the
GIS data were integrated with raster-based
geoprocessing software (ARCGRID; ESRI
1997) to produce a new raster map in which
each cell reflected the prediction of the model.
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Predictions developed from the 1st field sea-
son’s data were used to guide field sampling
during the 2nd field season.

In the final analysis we compared the util-
ity and bias of all models with K̂ (Congalton et
al. 1993, Næsset 1996). This statistic estimates
K, the level of confusion in the error matrix. K
analysis is a discrete multivariate technique
used in accuracy assessment and is appropri-
ate for discrete, binomially or multinomially
distributed data. Values for K̂ range from –∞
to 1; values between 0.4 and 0.8 represent
moderate to substantial agreement (Næsset
1996). The lower the value, the greater the
number of omission and/or commission errors
in the matrix.

Many GLM- and GAM-based models assess
model performance based on receiver operat-
ing curves (ROC), which plot sensitivity (true
positive predictions) over 1 – specificity (false
positive predictions or errors of commission)
over a range of values of threshold probability.
Because tree classifiers produce only a single
confusion matrix, and not a range of values
over a range of probabilities, their performance
evaluation reduces to single point in ROC space
and is difficult to evaluate or justify (Vayssières
et al. 2000). Manel et al. (2001) found that
Kappa provided a robust evaluator of model
performance when compared to ROC.

RESULTS

Field Data

Sphaeralcea caespitosa was observed at 31
sites in the Halfway Hills and Tunnel Springs
areas. We observed numerous individuals at
each site. Field sites ranged in elevation from
1661 m to 1911 m. This species was observed
in sites with slopes ranging from flat to 35%.
There was no relationship with aspect. Soil
textures included clay, clay loam, sandy clay
loam, sandy loam, and silty clay. Soils were
strongly to very strongly effervescent, and pH
ranged from 7.6 to 8.6.

Penstemon concinnus was observed at 43
sites in the Mountain Home Range, the Bur-
bank Hills, and the Tunnel Springs Mountains.
Numerous individuals were found at each site.
Elevation ranged from 1773 m to 2356 m, and
the species was never observed on slopes
greater than 35%. Soil textures at presence
sites included clay, clay loam, sandy clay loam,

and sandy loam. These soils had pH values
from 7.5 to 8.5 and were moderately efferves-
cent.

Jamesia tetrapetala was observed at 13 sites
located in the House and Snake Ranges.
Occurrences typically consisted of solitary in-
dividuals. Elevations at these sites ranged
from 2176 m to 2499 m. This species was only
found on north-facing slopes, typically in rock
crevices near vertical cliffs or in talus.

Primula domensis was observed on 11 sites.
These sites typically had 10–20 plants. All
were in the House Range above 2440 m, typi-
cally on 33%–58%, north- to southeast-facing
slopes and cliffs. This species was generally
observed growing in loamy soils and duff-cov-
ered colluvium. Soils, when present, were
very effervescent and had pH values between
7.5 and 8.7.

Field-based Models

Field models used primarily combinations
of site topographic characteristics and associ-
ated species. Sphaeralcea caespitosa was pre-
dicted to be present in the Halfway Hills at
elevations below 1919 m on slopes greater than
9.5%. Probabilities were highest between 1815
m and 1919 m (Fig. 1, Table 2). The best field
model for Penstemon concinnus predicted pres-
ence in several mountain ranges at elevations
between 1912 m and 2254 m. In this elevation
range, P. concinnus was predicted on convex
creep slopes, colluvial foot slopes, and alluvial
toe slopes over most of its range. The best
field model for J. tetrapetala predicted pres-
ence on fall faces and channel beds at eleva-
tions above 2190 m and in association with
Petrophytum caespitosum. For Pr. domensis,
the best field model predicted presence at ele-
vations greater than 2613 m. The model pre-
dicted presence at all aspects, but with greater
probability on north-facing slopes. Predictions
for all species were consistent with our field
observations, as well as published literature
(Atwood et al. 1991, Welsh et al. 1993, Franklin
1996). Accuracy, utility, and bias measures for
these models are presented in Table 2. Among
the field models, elevation proved to be the
most consistently useful variable. Slope posi-
tion, orientation, and landform were variously
used in the hierarchical ranking of critical
habitat for some species but not for others.
Combining associated species and the USGS
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place-name variable with site characteristics
further improved utility and minimized bias
for all species except S. caespitosa. Associated
species variables were tested in every model
for which the data were made available. Over-
all, however, the addition of associated species
had unexpectedly negative results on model
performance. The tree classifier selected spe-
cies we observed as fairly common and wide-
spread, but not the “indicator” or “associated”
species we noticed in the field.

In general, soil data collected during the
field season never contributed to any accurate,
useful, unbiased model. This may have resulted
more from the type of data collected, than from
any biophysical factor. Our soil analyses pro-
duced a limited, fairly homogeneous data set.

GIS-based Models

The most accurate GIS-based model for S.
caespitosa predicted the species on a re-
stricted set of geologic formations with low
CEC soils (Fig. 2). Highest probabilities were
obtained on limestone-shale and dolomite,
with slightly lower probabilities on limestone
or alluvium. Sphaeralcea caespitosa exhibited
a complex relationship with elevation, depend-
ing on geology, but generally occurred above
1625 m. The best GIS-based model predicted
P. concinnus on a restricted set of geologic for-
mations on sites with shallow slopes at eleva-
tions above 1752 m and aspects greater than
147°. For J. tetrapetala, the GIS model pre-
dicted presence on slopes >25%. The best
GIS model for Pr. domensis, predicted pres-
ence on dolomite at elevations greater than
2538 m. Accuracy, utility, and bias measures
for these models are presented in Table 3.

The tree classifier consistently selected geo-
logic formation, rock type, and percent slope
for predictions from the GIS data. Model util-
ity increased when slope orientation was cal-
culated by azimuth rather than as a categorical
variable. Like the field models, initial GIS
models were not geographically constrained.
Following the 2nd field season, a variable that
described distance to known populations was
tested in the model. This variable overly re-
stricted predictions and was not pursued fur-
ther during the study.

Models that described orientation as azimuth
had utility values greater than or equal to
those that described orientation as aspect value.
Underprediction occurred in 3 of 8 azimuth
models and 4 of 8 aspect value models. These
differences probably resulted from the mathe-
matical transformation rather than from any
ecological phenomenon. When orientation data
were described as a value between 0° and 360°,
the data were treated linearly with the result
that the difference between 10° and 350°
appears greater than the difference between
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TABLE 2. Summary of field-based model evaluation statistics. “Observations” refers to the total number of presences
observed.

Model Observations Accuracy Utility Bias K̂

Sphaeralcea caespitosa 31 97 0.611 –0.068 0.743
Penstemon concinnus 43 96 0.563 –0.256 0.696
Jamesia tetrapetala 13 98 0.611 0.303 0.725
Primula domensis 11 99 0.769 0.091 0.866

Mountain Range
n = 467

Halfway Hills Other

Elevation
n = 51

Absent
411/416

Slope
n = 41

Absent
10/10

Absent
10/13

< 1918 m > 1918 m

Elevation
n = 28

> 1815< 1815

Present
8/14

Present
14/14

> 9.5< 9.5

Fig. 1. Pruned classification tree model for Sphaeralcea
caespitosa based on field data. Ellipses indicate internal
nodes; boxes indicate terminal nodes. Ratios at the termi-
nal node are the proportion correctly classified.



10° and 300°. Transforming the data to aspect
value eliminated this problem, but made it dif-
ficult to distinguish 90° from 270°.

Mapped Predictions

We converted the model algorithms to pre-
dictive mapping routines in the GIS and pre-

pared maps of predicted presence by species,
assigning each pixel the probability of pres-
ence of the species. To avoid excessive spatial
extrapolation of the models, we determined
the maximum distance between known pres-
ences, buffered these sites by that distance,
and then applied the predictions to that total 
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Geologic formation 
n = 468

C2, D, O, Qa, S Other

Limestone shale, dolomite,
undif. volcanic

C2, D S, Tov

Absent
68/68

Absent
251/251

Present
5/5

Present
7/8

Elevation
n = 26

Absent
5/5

Present
6/8

CEC
n = 217

> 1.325 < 1.325

Limestone, alluvium

Rock type 
n = 149

Absent
61/67

Present
7/11

> 0.9875 < 0.9875 

> 1625 < 1625 

Absent
37/37

CEC
n = 78

Elevation
n = 115

Geologic Formation
n = 34

> 1876 < 1876 

Elevation
n = 21

> 1776 < 1776 

Absent
8/8

Elevation
n = 13

< 1751 > 1751 

Fig. 2. Pruned classification tree model for Sphaeralcea caespitosa based on GIS data. Ellipses indicate internal
nodes; boxes indicate terminal nodes. Ratios at the terminal node are the proportion correctly classified.

TABLE 3. Summary of GIS-based model evaluation statistics.

Model Observations Accuracy Utility Bias K̂

Sphaeralcea caespitosa 31 97 0.658 0.032 0.779
Penstemon concinnus 43 97 0.740 0.714 0.835
Jamesia tetrapetala 13 97 0.353 0.231 0.510
Primula domensis 11 99 0.770 0.300 0.866



area. Consequently, the prediction areas for
each species varied (Table 4). A map example
is provided in Figure 3.

DISCUSSION

We successfully developed predictive mod-
els and useful maps of potential habitat for the
narrow endemics in this study. Our selection
included 2 species that occurred in small
numbers of large populations (Sphaeralcea
caespitosa and Penstemon concinnus), 1 species
that had small populations in a large range
( Jamesia tetrapetala), and 1 species that had
small populations in a very small range (Prim-
ula domensis). While all models performed
well, models for S. caespitosa and P. concinnus
performed better than models for the other
species. In all cases, maps produced during
the 1st phase of this study greatly enhanced the
efficiency of our field work. Mapped habitats
represent extremes of environmental conditions
ranging from desert alluvial fans to mideleva-
tion mountain slopes. Using cross-validated
models, we predicted presence accurately even
though presence data were often <10% of the
total data set. Presence sites were predicted
and field-validated, demonstrating the models’
worth in conservation efforts.

When we did not find our target species at
the locations mapped as “likely present,” we
found habitats that fit every other definition of
critical habitat, including appropriate sets of
associated species. The errors of commission
are likely inherent in attempts to predict the
distribution of species known to be rare, and
possibly represent population limitations re-
lated to factors other than habitat. In many in-
stances we suspect that actual occurrence in
suitable habitat was limited by disruption of
seed establishment by human disturbance,
grazing, or biological constraints such as lack
of pollinator and dispersal agents. Our finding
that errors of commission are more common

than errors of omission is likely not a critical
problem, and likely makes the system especially
powerful for identifying conservation areas.

The importance of landform in the field-
based models suggests that an analogous vari-
able may have benefitted GIS-based models.
Future research might benefit from DEM data
at finer resolution. MacDougall and Loo (2002)
recommended GIS data at 1:20,000. Presence–
absence information for associated species may
also be helpful in future predictive modeling
efforts (Edwards et al. 2005), an analysis that
will be possible with new versions of the Atlas
of Utah Plants (Ramsey and Shultz 2004, Shultz
et al. 2005).

When applied to rare plant species, predic-
tive vegetation modeling is a potentially pow-
erful tool for both biologists and land man-
agers. Rare species habitat modeling can be
used to guide searches for unknown popula-
tions (thus reducing expensive field searches),
to indicate site suitability for restoration and
reintroduction efforts, to predict impacts of
habitat degradation, and to provide a frame-
work for further research on specific physio-
logical requirements (Wiser et al. 1998). The
predictive models proved useful in making field
searches for new populations more efficient.
This may be particularly important given limi-
tations of time and funding for field studies.
Our approach can be applied at site and land-
scape scales, and is best-suited for species with
strong correlations to environmental variables.
The techniques used in this approach are likely
to become more readily available and more
powerful with higher-resolution and more
physiologically meaningful digital data
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TABLE 4. Summary of mapped predictions. Likelihood values are a percentage of the total area.

Very likely Likely
Model Total area (ha) present present Unlikely Absent
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